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Convolutional Neural Networks (CNNs) are a type of deep learning model known to
solve machine learning problems related to images and video, such as image
classification, object detection, segmentation, and more. This is because CNNs use a
special type of layer called convolutional layers, which have shared learnable
parameters. The weight or parameter sharing works because the patterns to be learned in
an image (such as edges or contours) are assumed to be independent of the location of
the pixels in the image. Just as CNNs are applied to images, Long Short-Term Memory

(LSTM) networks – which are a type of Recurrent Neural Network (RNN) – prove to be
extremely effective at solving machine learning problems related to sequential data. An
example of sequential data could be text. For example, in a sentence, each word is
dependent on the previous word(s). LSTM models are meant to model such sequential
dependencies.

These two different types of networks – CNNs and LSTMs – can be cascaded to form a
hybrid model that takes in images or video and outputs text. One well-known application
of such a hybrid model is image captioning, where the model takes in an image and
outputs a plausible textual description of the image. Since 2010, machine learning has
been used to perform the task of image captioning [2.1].

However, neural networks were first successfully used for this task in around 2014/2015
[2.2]. Ever since, image captioning has been actively researched. With significant
improvements each year, this deep learning application can become useful for real-world
applications such as auto-generating alt-text in websites to make them more accessible
for the visually impaired.

This chapter first discusses the architecture of such a hybrid model, along with the
related implementational details in PyTorch, and at the end of the chapter, we will build
an image captioning system from scratch using PyTorch. This chapter covers the following
topics:

Building a neural network with CNNs and LSTMs
Building an image caption generator using PyTorch

Building a neural network with CNNs and LSTMs

A CNN-LSTM network architecture consists of a convolutional layer(s) for extracting
features from the input data (image), followed by an LSTM layer(s) to perform sequential
predictions. This kind of model is both spatially and temporally deep. The convolutional

https://packt.link/EarlyAccessCommunity


part of the model is often used as an encoder that takes in an input image and outputs
high-dimensional features or embeddings.

In practice, the CNN used for these hybrid networks is often pre-trained on, say, an image
classification task. The last hidden layer of the pre-trained CNN model is then used as an
input to the LSTM component, which is used as a decoder to generate text.

When we are dealing with textual data, we need to transform the words and other
symbols (punctuation, identifiers, and more) – together referred to as tokens – into
numbers. We do so by representing each token in the text with a unique corresponding
number. In the following sub-section, we will demonstrate an example of text encoding.

Text encoding demo

Let's assume we're building a machine learning model with textual data; say, for example,
that our text is as follows:

<start> PyTorch is a deep learning library. <end>

Then, we would map each of these words/tokens to numbers, as follows:

<start> : 0 

PyTorch : 1 

is : 2 

a : 3 

deep : 4 

learning : 5 

library : 6 

. : 7 

<end> : 8

Once we have the mapping, we can represent this sentence numerically as a list of
numbers:

<start> PyTorch is a deep learning library. <end> -> [0, 1, 2, 3, 4, 5, 6, 7, 8]

Also, for example, <start> PyTorch is deep. <end>  would be encoded as -> [0, 1, 2, 4, 7, 8]
and so on. This mapping, in general, is referred to as vocabulary, and building a
vocabulary is a crucial part of most text-related machine learning problems.

The LSTM model, which acts as the decoder, takes in a CNN embedding as input at t=0 .
Then, each LSTM cell makes a token prediction at each time-step, which is fed as the
input to the next LSTM cell. The overall architecture thus generated can be visualized as
shown in the following diagram:



Figure 2.1 – Example CNN-LSTM architecture

The demonstrated architecture is suitable for the image captioning task. If instead of just
having a single image we had a sequence of images (say, in a video) as the input to the
CNN layer, then we would include the CNN embedding as the LSTM cell input at each
time-step, not just at t=0 . This kind of architecture would be useful for applications such
as activity recognition or video description.

In the next section, we will implement an image captioning system in PyTorch that
includes building a hybrid model architecture as well as data loading, preprocessing,
model training, and model evaluation pipelines.

Building an image caption generator using PyTorch

For this exercise, we will be using the Common Objects in Context (COCO) dataset
[2.3] , which is a large-scale object detection, segmentation, and captioning dataset.

This dataset consists of over 200,000 labeled images with five captions for each image.
The COCO dataset emerged in 2014 and has helped significantly in the advancement of
object recognition-related computer vision tasks. It stands as one of the most commonly
used datasets for benchmarking tasks such as object detection, object segmentation,
instance segmentation, and image captioning.

In this exercise, we will use PyTorch to train a CNN-LSTM model on this dataset and use
the trained model to generate captions for unseen samples. Before we do that, though,
there are a few pre-requisites that we need to take care of .

Note

We will be referring to only the important snippets of code for illustration
purposes. The full exercise code can be found in our github repository [2.4]



Downloading the image captioning datasets

Before we begin building the image captioning system, we need to download the required
datasets. If you do not have the datasets downloaded, then run the following script with
the help of Jupyter Notebook. This should help with downloading the datasets locally.

Note

We are using a slightly older version of the dataset as it is slightly smaller in size,
enabling us to get the results faster.

The training and validation datasets are 13 GB and 6 GB in size, respectively.
Downloading and extracting the dataset files, as well as cleaning and processing them,
might take a while. A good idea is to execute these steps as follows and let them finish
overnight:

# download images and annotations to the data directory 

!wget http://msvocds.blob.core.windows.net/annotations-1-0-3/captions_train-val2014.zip -P ./dat

!wget http://images.cocodataset.org/zips/train2014.zip -P ./data_dir/ 

!wget http://images.cocodataset.org/zips/val2014.zip -P ./data_dir/ 

# extract zipped images and annotations and remove the zip files 

!unzip ./data_dir/captions_train-val2014.zip -d ./data_dir/ 

!rm ./data_dir/captions_train-val2014.zip 

!unzip ./data_dir/train2014.zip -d ./data_dir/ 

!rm ./data_dir/train2014.zip 

!unzip ./data_dir/val2014.zip -d ./data_dir/ 

!rm ./data_dir/val2014.zip

You should see the following output:



Figure 2.2 – Data download and extraction

This step basically creates a data folder ( ./data_dir ), downloads the zipped images and
annotation files, and extracts them inside the data folder.

Preprocessing caption (text) data

The downloaded image captioning datasets consist of both text (captions) and images. In
this section, we will preprocess the text data to make it usable for our CNN-LSTM model.
The exercise is laid out as a sequence of steps. The first three steps are focused on
processing the text data:

1. For this exercise, we will need to import a few dependencies. Some of the crucial
modules we will import for this chapter are as follows:

import nltk 

from pycocotools.coco import COCO 



import torch.utils.data as data 

import torchvision.models as models 

import torchvision.transforms as transforms 

from torch.nn.utils.rnn import pack_padded_sequence

nltk  is the natural language toolkit, which will be helpful in building our vocabulary,
while pycocotools  is a helper tool to work with the COCO dataset. The various Torch
modules we have imported here have already been discussed in the previous chapter,
except the last one – that is, pack_padded_sequence . This function will be useful to transform
sentences with variable lengths (number of words) into fixed-length sentences by applying
padding.

Besides importing the nltk  library, we will also need to download its punkt  tokenizer
model, as follows:

nltk.download('punkt')

This will enable us to tokenize given text into constituent words.

1. Next, we build the vocabulary – that is, a dictionary that can convert actual textual
tokens (such as words) into numeric tokens. This step is essential for most text-related
tasks: :

def build_vocabulary(json, threshold): 

    """Build a vocab wrapper.""" 

    coco = COCO(json) 

    counter = Counter() 

    ids = coco.anns.keys() 

    for i, id in enumerate(ids): 

        caption = str(coco.anns[id]['caption']) 

        tokens = nltk.tokenize.word_tokenize(caption.lower()) 

        counter.update(tokens) 

        if (i+1) % 1000 == 0:

            print("[{}/{}] Tokenized the captions.".format(i+1, len(ids)))

First, inside the vocabulary builder function, JSON text annotations are loaded, and
individual words in the annotation/caption are tokenized or converted into numbers and
stored in a counter.

Then, tokens with fewer than a certain number of occurrences are discarded, and the
remaining tokens are added to a vocabulary object beside some wildcard tokens – start
(of the sentence), end , unknown_word , and padding tokens, as follows:

    # If word freq < 'thres', then word is discarded. 

    tokens = [token for token, cnt in counter.items() if cnt >= threshold] 

    # Create vocab wrapper + add special tokens. 

    vocab = Vocab() 

    vocab.add_token('<pad>') 

    vocab.add_token('<start>') 

    vocab.add_token('<end>') 

    vocab.add_token('<unk>') 

    # Add words to vocab. 

    for i, token in enumerate(tokens): 

        vocab.add_token(token) 

    return vocab

Finally, using the vocabulary builder function, a vocabulary object vocab is created and
saved locally for further reuse, as shown in the following code:

vocab = build_vocabulary(json='data_dir/annotations/captions_train2014.json', threshold=4) 

vocab_path = './data_dir/vocabulary.pkl' 

with open(vocab_path, 'wb') as f: 



    pickle.dump(vocab, f) 

print("Total vocabulary size: {}".format(len(vocab))) 

print("Saved the vocabulary wrapper to '{}'".format(vocab_path))

The output for this is as follows:

Figure 2.3 – Vocabulary creation

Once we have built the vocabulary, we can deal with the textual data by transforming it
into numbers at runtime.

Preprocessing image data

After downloading the data and building the vocabulary for the text captions, we need to
perform some preprocessing for the image data.



Because the images in the dataset can come in various sizes or shapes, we need to
reshape all the images to a fixed shape so that they can be inputted to the first layer of
our CNN model, as follows:

def reshape_images(image_path, output_path, shape): 

    images = os.listdir(image_path) 

    num_im = len(images) 

    for i, im in enumerate(images): 

        with open(os.path.join(image_path, im), 'r+b') as f: 

            with Image.open(f) as image: 

                image = reshape_image(image, shape) 

                image.save(os.path.join(output_path, im), image.format) 

        if (i+1) % 100 == 0: 

            print ("[{}/{}] Resized the images and saved into '{}'.".format(i+1, num_im, output_

reshape_images(image_path, output_path, image_shape)

The output for this will be as follows:

Figure 2.4 – Image preprocessing (reshaping)

We have reshaped all the images to 256 X 256 pixels, which makes them compatible with
our CNN model architecture.

Defining the image captioning data loader

We have already downloaded and preprocessed the image captioning data. Now it is time
to cast this data as a PyTorch dataset object. This dataset object can subsequently be used
to define a PyTorch data loader object, which we will use in our training loop to fetch
batches of data as follows:

1. Now, we will implement our own custom Dataset  module and a custom data loader:



class CustomCocoDataset(data.Dataset): 

    """COCO Dataset compatible with torch.utils.data.DataLoader.""" 

    def __init__(self, data_path, coco_json_path, vocabulary, transform=None): 

        """Set path for images, texts and vocab wrapper. 

         

        Args: 

            data_path: image directory. 

            coco_json_path: coco annotation file path. 

            vocabulary: vocabulary wrapper. 

            transform: image transformer. 

        """ 

        ... 

    def __getitem__(self, idx): 

        """Returns one data sample (X, y).""" 

        ... 

        return image, ground_truth 

    def __len__(self): 

        return len(self.indices)

First, in order to define our custom PyTorch Dataset  object, we have defined our own
__init__ , __get_item__ , and __len__  methods for instantiation, fetching items, and
returning the size of the dataset, respectively.

1. Next, we define collate_function , which returns mini batches of data in the form of X ,
y , as follows:

def collate_function(data_batch): 

    """Creates mini-batches of data 

    We build custom collate function rather than using standard collate function, 

    because padding is not supported in the standard version. 

    Args: 

        data: list of (image, caption)tuples. 

            - image: tensor of shape (3, 256, 256). 

            - caption: tensor of shape (:); variable length. 

    Returns: 

        images: tensor of size (batch_size, 3, 256, 256). 

        targets: tensor of size (batch_size, padded_length). 

        lengths: list. 

    """ 

    ...        

    return imgs, tgts, cap_lens

Usually, we would not need to write our own collate  function, but we do so to deal with
variable-length sentences so that when the length of a sentence (say, k ) is less than the
fixed length, n , then we need to pad the n-k  tokens with padding tokens using the
pack_padded_sequence  function.

1. Finally, we will implement the get_loader  function, which returns a custom data loader
for the COCO  dataset in the following code:

def get_loader(data_path, coco_json_path, vocabulary, transform, batch_size, shuffle): 

    # COCO dataset 

    coco_dataset = CustomCocoDataset(data_path=data_path, 

                       coco_json_path=coco_json_path, 

                       vocabulary=vocabulary, 

                       transform=transform) 

    custom_data_loader = torch.utils.data.DataLoader(dataset=coco_dataset, batch_size=batch_size

    return custom_data_loader

During the training loop, this function will be extremely useful and efficient in fetching
mini batches of data.



This completes the work needed to set up the data pipeline for model training. We will
now work toward the actual model itself.

Defining the CNN-LSTM model

Now that we have set up our data pipeline, we will define the model architecture as per
the description in Figure 2.1, as follows:

class CNNModel(nn.Module):    def __init__(self, embedding_size):        """Load pretrained ResN

We have defined two sub-models – that is, a CNN model and an RNN model. For the CNN
part, we use a pre-trained CNN model available under the PyTorch models repository: the
ResNet 152 architecture. While we will learn more about ResNet in detail in the next
chapter, this deep CNN model with 152 layers is pre-trained on the ImageNet dataset
[2.5] . The ImageNet dataset contains over 1.4 million RGB images labeled over 1,000
classes. These 1,000 classes belong to categories such as plants, animals, food, sports,
and more.

We remove the last layer of this pre-trained ResNet model and replace it with a fully-
connected layer followed by a batch normalization layer.

FAQ - Why are we able to replace the fully-connected layer?

The neural network can be seen as a sequence of weight matrices starting from
the weight matrix between the input layer and the first hidden layer straight up to
the weight matrix between the penultimate layer and the output layer. A pre-
trained model can then be seen as a sequence of nicely tuned weight matrices.

By replacing the final layer, we are essentially replacing the final weight matrix (K
x 1000-dimensional, assuming K number of neurons in the penultimate layer) with
a new randomly initialized weight matrix (K x 256-dimensional, where 256 is the
new output size).

The batch normalization layer normalizes the fully connected layer outputs with a mean of
0  and a standard deviation of 1  across the entire batch. This is similar to the standard
input data normalization that we perform using torch.transforms . Performing batch
normalization helps limit the extent to which the hidden layer output values fluctuate. It
also generally helps with faster learning. We can use higher learning rates because of a
more uniform ( 0  mean, 1  standard deviation) optimization hyperplane.

Since this is the final layer of the CNN sub-model, batch normalization helps insulate the
LSTM sub-model against any data shifts that the CNN might introduce. If we do not use
batch-norm, then in the worst-case scenario, the CNN final layer could output values with,
say, mean > 0.5 and standard deviation = 1 during training. But during inference, if for a
certain image the CNN outputs values with mean < 0.5 and standard deviation = 1, then
the LSTM sub-model would struggle to operate on this unforeseen data distribution.

Coming back to the fully connected layer, we introduce our own layer because we do not
need the 1,000 class probabilities of the ResNet model. Instead, we want to use this model
to generate an embedding vector for each image. This embedding can be thought of as a
one-dimensional, numerically encoded version of a given input image. This embedding is
then fed to the LSTM model.

We will explore LSTMs in detail in Chapter 4, Deep Recurrent Model Architectures. But,
as we have seen in Figure 2.1, the LSTM layer takes in the embedding vectors as input



and outputs a sequence of words that should ideally describe the image from which the
embedding was generated:

class LSTMModel(nn.Module): 

    def __init__(self, embedding_size, hidden_layer_size, vocabulary_size, num_layers, max_seq_l

        ... 

        self.lstm_layer = nn.LSTM(embedding_size, hidden_layer_size, num_layers, batch_first=Tru

        self.linear_layer = nn.Linear(hidden_layer_size, vocabulary_size) 

        ... 

         

    def forward(self, input_features, capts, lens): 

        ... 

        hidden_variables, _ = self.lstm_layer(lstm_input) 

        model_outputs = self.linear_layer(hidden_variables[0]) 

        return model_outputs

The LSTM model consists of an LSTM layer followed by a fully connected linear layer. The
LSTM layer is a recurrent layer, which can be imagined as LSTM cells unfolded along the
time dimension, forming a temporal sequence of LSTM cells. For our use case, these cells
will output word prediction probabilities at each time-step and the word with the highest
probability is appended to the output sentence.

The LSTM cell at each time-step also generates an internal cell state, which is passed on
as input to the LSTM cell of the next time-step. The process continues until an LSTM cell
outputs an <end>  token/word. The <end>  token is appended to the output sentence. The
completed sentence is our predicted caption for the image.

Note that we also specify the maximum allowed sequence length as 20  under the
max_seq_len  variable. This will essentially mean that any sentence shorter than 20 words
will have empty word tokens padded at the end and sentences longer than 20 words will
be curtailed to just the first 20 words.

Why do we do it and why 20? If we truly want our LSTM to handle sentences of any
length, we might want to set this variable to an extremely large value, say, 9,999 words.
However, (a) not many image captions come with that many words, and (b), more
importantly, if there were ever such extra-long outlier sentences, the LSTM would
struggle with learning temporal patterns across such a huge number of time-steps.

We know that LSTMs are better than RNNs at dealing with longer sequences; however, it
is difficult to retain memory across such sequence lengths. We choose 20  as a reasonable
number given the usual image caption lengths and the maximum length of captions we
would like our model to generate.

Both the LSTM layer and the linear layer objects in the previous code are derived from
nn.module  and we define the __init__  and forward  methods to construct the model and run
a forward pass through the model, respectively. For the LSTM model, we additionally
implement a sample  method, as shown in the following code, which will be useful for
generating captions for a given image:

    def sample(self, input_features, lstm_states=None): 

        """Generate caps for feats with greedy search.""" 

        sampled_indices = [] 

        ... 

        for i in range(self.max_seq_len): 

... 

            sampled_indices.append(predicted_outputs) 

            ... 

        sampled_indices = torch.stack(sampled_indices, 1) 

        return sampled_indices



The sample  method makes use of greedy search to generate sentences; that is, it chooses
the sequence with the highest overall probability.

This brings us to the end of the image captioning model definition step. We are now all set
to train this model.

Training the CNN-LSTM model

As we have already defined the model architecture in the previous section, we will now
train the CNN-LSTM model. Let's examine the details of this step one by one:

1. First, we define the device. If there is a GPU available, use it for training; otherwise,
use the CPU:

# Device configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

Although we have already reshaped all the images to a fixed shape, (256,  256) , that is not
enough. We still need to normalize the data.

FAQ - Why do we need to normalize the data?

Normalization is important because different data dimensions might have
different distributions, which might skew the overall optimization space and lead
to inefficient gradient descent (think of an ellipse versus a circle).

1. We will use PyTorch's transform  module to normalize the input image pixel values:

# Image pre-processing, normalization for pretrained resnet 

transform = transforms.Compose([ 

    transforms.RandomCrop(224), 

    transforms.RandomHorizontalFlip(), 

    transforms.ToTensor(), 

    transforms.Normalize((0.485, 0.456, 0.406), 

                         (0.229, 0.224, 0.225))])

Furthermore, we augment the available dataset.

FAQ - Why do we need data augmentation?

Augmentation helps not only in generating larger volumes of training data but
also in making the model robust against potential variations in input data.

Using PyTorch's transform  module, we implement two data augmentation techniques here:

i) Random cropping, resulting in the reduction of the image size from (256,  256)  to (224,
224) .

ii) Horizontal flipping of the images.

1. Next, we load the vocabulary that we built in the Preprocessing caption (text) data

section. We also initialize the data loader using the get_loader  function defined in the
Defining the image captioning data loader section:

# Load vocab wrapper 

with open('data_dir/vocabulary.pkl', 'rb') as f: 

    vocabulary = pickle.load(f) 

     

# Instantiate data loader 

custom_data_loader = get_loader('data_dir/resized_images', 'data_dir/annotations/captions_train2



                         transform, 128, 

                         shuffle=True)

1. Next, we arrive at the main section of this step, where we instantiate the CNN and
LSTM models in the form of encoder and decoder models. Furthermore, we also
define the loss function – cross entropy loss – and the optimization schedule – the
Adam optimizer – as follows:

# Build models 

encoder_model = CNNModel(256).to(device) 

decoder_model = LSTMModel(256, 512, len(vocabulary), 1).to(device) 

     

# Loss & optimizer 

loss_criterion = nn.CrossEntropyLoss() 

parameters = list(decoder_model.parameters()) + list(encoder_model.linear_layer.parameters()) + 

optimizer = torch.optim.Adam(parameters, lr=0.001)

As discussed in Chapter 1, Overview of Deep Learning Using PyTorch, Adam is possibly
the best choice for an optimization schedule when dealing with sparse data. Here, we are
dealing with both images and text – perfect examples of sparse data because not all pixels
contain useful information and numericized/vectorized text is a sparse matrix in itself.

1. Finally, we run the training loop (for five epochs) where we use the data loader to
fetch a mini batch of the COCO dataset, run a forward pass with the mini batch
through the encoder and decoder networks, and finally, tune the parameters of the
CNN-LSTM model using backpropagation (backpropagation through time, for the
LSTM network):

for epoch in range(5): 

    for i, (imgs, caps, lens) in enumerate(custom_data_loader): 

        tgts = pack_padded_sequence(caps, lens, batch_first=True)[0] 

        # Forward pass, backward propagation 

        feats = encoder_model(imgs) 

        outputs = decoder_model(feats, caps, lens) 

        loss = loss_criterion(outputs, tgts) 

        decoder_model.zero_grad() 

        encoder_model.zero_grad() 

        loss.backward() 

        optimizer.step()

Every 1,000 iterations into the training loop, we save a model checkpoint. For
demonstration purposes, we have run the training for just two epochs, as follows:

        # Log training steps 

        if i % 10 == 0: 

            print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Perplexity: {:5.4f}' 

                  .format(epoch, 5, i, total_num_steps, loss.item(), np.exp(loss.item()))) 

        # Save model checkpoints 

        if (i+1) % 1000 == 0:

            torch.save(decoder_model.state_dict(), os.path.join( 

                'models_dir/', 'decoder-{}-{}.ckpt'.format(epoch+1, i+1))) 

            torch.save(encoder_model.state_dict(), os.path.join( 

                'models_dir/', 'encoder-{}-{}.ckpt'.format(epoch+1, i+1)))

The output will be as follows:



Figure 2.5 – Model training loop

Generating image captions using the trained model

We have trained an image captioning model in the previous section. In this section, we
will use the trained model to generate captions for images previously unseen by the
model:

1. We have stored a sample image, sample.jpg , to run inference on. We define a function
to load the image and reshape it to (224, 224)  pixels. Then , we define the
transformation module to normalize the image pixels, as follows:

image_file_path = 'sample.jpg' 

# Device config 

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 

def load_image(image_file_path, transform=None): 

    img = Image.open(image_file_path).convert('RGB') 

    img = img.resize([224, 224], Image.LANCZOS) 



    if transform is not None:

        img = transform(img).unsqueeze(0) 

    return img 

# Image pre-processing 

transform = transforms.Compose([ 

    transforms.ToTensor(), 

    transforms.Normalize((0.485, 0.456, 0.406), 

                         (0.229, 0.224, 0.225))])

1. Next, we load the vocabulary and instantiate the encoder and decoder models:

# Load vocab wrapper 

with open('data_dir/vocabulary.pkl', 'rb') as f: 

    vocabulary = pickle.load(f) 

# Build models 

encoder_model = CNNModel(256).eval()  # eval mode (batchnorm uses moving mean/variance) 

decoder_model = LSTMModel(256, 512, len(vocabulary), 1) 

encoder_model = encoder_model.to(device) 

decoder_model = decoder_model.to(device)

1. Once we have the model scaffold ready, we will use the latest saved checkpoint from
the two epochs of training to set the model parameters:

# Load trained model params 

encoder_model.load_state_dict(torch.load('models_dir/encoder-2-3000.ckpt')) 

decoder_model.load_state_dict(torch.load('models_dir/decoder-2-3000.ckpt'))

After this point, the model is ready to use for inference.

1. Next, we load the image and run model-inference – that is, first we use the encoder
model to generate an embedding from the image, and then we feed the embedding to
the decoder network to generate sequences, as follows:

# Prepare image 

img = load_image(image_file_path, transform) 

img_tensor = img.to(device) 

# Generate caption text from image 

feat = encoder_model(img_tensor) 

sampled_indices = decoder_model.sample(feat) 

sampled_indices = sampled_indices[0].cpu().numpy()          # (1, max_seq_length) -> (max_seq_le

1. At this stage, the caption predictions are still in the form of numeric tokens. We need
to convert the numeric tokens into actual text using the vocabulary in reverse:

# Convert numeric tokens to text tokens 

predicted_caption = [] 

for token_index in sampled_indices: 

    word = vocabulary.i2w[token_index] 

    predicted_caption.append(word) 

    if word == '<end>': 

        break 

predicted_sentence = ' '.join(predicted_caption)

1. Once we have transformed our output into text, we can visualize both the image as
well as the generated caption:

# Print image & generated caption text 

print (predicted_sentence) 

img = Image.open(image_file_path) 

plt.imshow(np.asarray(img))

The output will be as follows:



Figure 2.6 – Model inference on a sample image

It seems that although the model is not absolutely perfect, within two epochs, it is already
trained well enough to generate sensible captions.

Summary

This chapter discussed the concept of combining a CNN model and an LSTM model in an
encoder-decoder framework, jointly training them, and using the combined model to
generate captions for an image.

We have used CNNs both in this and the previous chapter's exercises.

In the next chapter, we will take a deeper look at the gamut of different CNN
architectures developed over the years, how each of them is uniquely useful, and how
they can be easily implemented using PyTorch.



3 Deep CNN Architectures
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In this chapter, we will first briefly review the evolution of CNNs (in terms of
architectures), and then we will study the different CNN architectures in detail. We will
implement these CNN architectures using PyTorch and in doing so, we aim to
exhaustively explore the tools (modules and built-in functions) that PyTorch has to offer in
the context of building Deep CNNs. Building strong CNN expertise in PyTorch will enable
us to solve a number of deep learning problems involving CNNs. This will also help us in
building more complex deep learning models or applications of which CNNs are a part.

This chapter will cover the following topics:

Why are CNNs so powerful?
Evolution of CNN architectures
Developing LeNet from scratch
Fine-tuning the AlexNet model
Running a pre-trained VGG model
Exploring GoogLeNet and Inception v3
Discussing ResNet and DenseNet architectures
Understanding EfficientNets and the future of CNN architectures

Why are CNNs so powerful?

CNNs are among the most powerful machine learning models at solving challenging
problems such as image classification, object detection, object segmentation, video
processing, natural language processing, and speech recognition. Their success is
attributed to various factors, such as the following:

Weight sharing: This makes CNNs parameter-efficient, that is, different features are
extracted using the same set of weights or parameters. Features are the high-level
representations of input data that the model generates with its parameters.
Automatic feature extraction: Multiple feature extraction stages help a CNN to
automatically learn feature representations in a dataset.
Hierarchical learning: The multi-layered CNN structure helps CNNs to learn low-,
mid-, and high-level features.
The ability to explore both spatial and temporal correlations in the data, such as in
video- processing tasks.

Besides these pre-existing fundamental characteristics, CNNs have advanced over the
years with the help of improvements in the following areas:
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The use of better activation and loss functions, such as using ReLU to overcome
the vanishing gradient problem.
Parameter optimization, such as using an optimizer based on Adaptive Momentum
(Adam) instead of simple Stochastic Gradient Descent.
Regularization: Applying dropouts and batch normalization besides L2 regularization.

FAQ - What is the vanishing gradient problem?

Backpropagation in neural networks works on the basis of the chain rule of
differentiation. According to the chain rule, the gradient of the loss function with
respect to the input layer parameters can be written as a product of gradients at
each layer. If these gradients are all less than 1 – and worse still, tending toward 0
– then the product of these gradients will be a vanishingly small value. The
vanishing gradient problem can cause serious troubles in the optimization process
by preventing the network parameters from changing their values, which is
equivalent to stunted learning.

But some of the most significant drivers of development in CNNs over the years have
been the various architectural innovations:

Spatial exploration-based CNNs: The idea behind spatial exploration is using
different kernel sizes in order to explore different levels of visual features in input
data. The following diagram shows a sample architecture for a spatial exploration-
based CNN model:

Figure 3.1 – Spatial exploration-based CNN

Depth-based CNNs: The depth here refers to the depth of the neural network, that
is, the number of layers. So, the idea here is to create a CNN model with multiple



convolutional layers in order to extract highly complex visual features. The following
diagram shows an example of such a model architecture:

Figure 3.2 – Depth-based CNN

Width-based CNNs: Width refers to the number of channels or feature maps in the
data or features extracted from the data. So, width-based CNNs are all about
increasing the number of feature maps as we go from the input to the output layers,
as demonstrated in the following diagram:

Figure 3.3 – Width-based CNN

Multi-path-based CNNs: So far, the preceding three types of architectures have
monotonicity in connections between layers, that is, direct connections exist only
between consecutive layers. Multi-path CNNs brought the idea of making shortcut
connections or skip connections between non-consecutive layers. The following
diagram shows an example of a multi-path CNN model architecture:



Figure 3.4 – Multi-path CNN

A key advantage of multi-path architectures is a better flow of information across several
layers, thanks to the skip connections. This, in turn, also lets the gradient flow back to the
input layers without too much dissipation.

Having looked at the different architectural setups found in CNN models, we will now
look at how CNNs have evolved over the years ever since they were first used.

Evolution of CNN architectures

CNNs have been in existence since 1989, when the first multilayered CNN, called
ConvNet, was developed by Yann LeCun. This model could perform visual cognition tasks
such as identifying handwritten digits. In 1998, LeCun developed an improved ConvNet
model called LeNet. Due to its high accuracy in optical recognition tasks, LeNet was
adopted for industrial use soon after its invention. Ever since, CNNs have been one of the
most successful machine learning models, both in industry as well as academia. The
following diagram shows a brief timeline of architectural developments in the lifetime of
CNNs, starting from 1989 all the way to 2020:



Figure 3.5 – CNN architecture evolution – a broad picture

As we can see, there is a significant gap between the years 1998 and 2012. This was
primarily because there wasn't a dataset big and suitable enough to demonstrate the
capabilities of CNNs, especially deep CNNs. And on the existing small datasets of the
time, such as MNIST, classical machine learning models such as SVMs were starting to
beat CNN performance. During those years, a few CNN developments took place.

The ReLU activation function was designed in order to deal with the gradient explosion
and decay problem during backpropagation. Non-random initialization of network
parameter values proved to be crucial. Max-pooling was invented as an effective method
for subsampling. GPUs were getting popular for training neural networks, especially
CNNs at scale. Finally, and most importantly, a large-scale dedicated dataset of annotated
images called ImageNet [3.1] was created by a research group at Stanford. This dataset
is still one of the primary benchmarking datasets for CNN models to date.

With all of these developments compounding over the years, in 2012, a different
architectural design brought about a massive improvement in CNN performance on the
ImageNet  dataset. This network was called AlexNet (named after the creator, Alex
Krizhevsky). AlexNet, along with having various novel aspects such as random cropping
and pre-training, established the trend of uniform and modular convolutional layer design.
The uniform and modular layer structure was taken forward by repeatedly stacking such
modules (of convolutional layers), resulting in very deep CNNs also known as VGGs.

Another approach of branching the blocks/modules of convolutional layers and stacking
these branched blocks on top of each other proved extremely effective for tailored visual
tasks. This network was called GoogLeNet (as it was developed at Google) or Inception

v1 (inception being the term for those branched blocks). Several variants of the VGG and



Inception networks followed, such as VGG16, VGG19, Inception v2, Inception v3, and
so on.

The next phase of development began with skip connections. To tackle the problem of
gradient decay while training CNNs, non-consecutive layers were connected via skip
connections lest information dissipated between them due to small gradients. A popular
type of network that emerged with this trick, among other novel characteristics such as
batch normalization, was ResNet.

A logical extension of ResNet was DenseNet, where layers were densely connected to
each other, that is, each layer gets the input from all the previous layers' output feature
maps. Furthermore, hybrid architectures were then developed by mixing successful
architectures from the past such as Inception-ResNet and ResNeXt, where the parallel
branches within a block were increased in number.

Lately, the channel boosting technique has proven useful in improving CNN
performance. The idea here is to learn novel features and exploit pre-learned features
through transfer learning. Most recently, automatically designing new blocks and finding
optimal CNN architectures has been a growing trend in CNN research. Examples of such
CNNs are MnasNets and EfficientNets. The approach behind these models is to perform
a neural architecture search to deduce an optimal CNN architecture with a uniform model
scaling approach.

In the next section, we will go back to one of the earliest CNN models and take a closer
look at the various CNN architectures developed since. We will build these architectures
using PyTorch, training some of the models on real-world datasets. We will also explore
PyTorch's pre-trained CNN models repository, popularly known as model-zoo. We will
learn how to fine-tune these pre-trained models as well as running predictions on them.

Developing LeNet from scratch

LeNet, originally known as LeNet-5, is one of the earliest CNN models, developed in
1998. The number 5 in LeNet-5 represents the total number of layers in this model, that
is, two convolutional and three fully connected layers. With roughly 60,000 total
parameters, this model gave state-of-the-art performance on image recognition tasks for
handwritten digit images in the year 1998. As expected from a CNN model, LeNet
demonstrated rotation, position, and scale invariance as well as robustness against
distortion in images. Contrary to the classical machine learning models of the time, such
as SVMs, which treated each pixel of the image separately, LeNet exploited the
correlation among neighboring pixels.

Note that although LeNet was developed for handwritten digit recognition, it can
certainly be extended for other image classification tasks, as we shall see in our next
exercise. The following diagram shows the architecture of a LeNet model:



Figure 3.6 – LeNet architecture

As mentioned earlier, there are two convolutional layers followed by three fully connected
layers (including the output layer). This approach of stacking convolutional layers
followed by fully connected layers later became a trend in CNN research and is still
applied to the latest CNN models. Besides these layers, there are pooling layers in
between. These are basically subsampling layers that reduce the spatial size of image
representation, thereby reducing the number of parameters and computations. The
pooling layer used in LeNet was an average pooling layer that had trainable weights. Soon
after, max pooling emerged as the most commonly used pooling function in CNNs.

The numbers in brackets in each layer in the figure demonstrate the dimensions (for
input, output, and fully connected layers) or window size (for convolutional and pooling
layers). The expected input for a grayscale image is 32x32 pixels in size. This image is
then operated on by 5x5 convolutional kernels, followed by 2x2 pooling, and so on. The
output layer size is 10, representing the 10 classes.



In this section, we will use PyTorch to build LeNet from scratch and train and evaluate it
on a dataset of images for the task of image classification. We will see how easy and
intuitive it is to build the network architecture in PyTorch using the outline from Figure

3.6.

Furthermore, we will demonstrate how effective LeNet is, even on a dataset different
from the ones it was originally developed on (that is, MNIST) and how PyTorch makes it
easy to train and test the model in a few lines of code.

Using PyTorch to build LeNet

Observe the following steps to build the model:

1. For this exercise, we will need to import a few dependencies. Execute the following
import  statements:

import numpy as np 

import matplotlib.pyplot as plt 

import torch 

import torchvision 

import torch.nn as nn 

import torch.nn.functional as F 

import torchvision.transforms as transforms 

torch.use_deterministic_algorithms(True)     

Besides the usual imports, we also invoke the use_deterministic_algorithms function to
ensure the reproducibility of this exercise.

1. Next, we will define the model architecture based on the outline given in Figure 3.6:

class LeNet(nn.Module): 

    def __init__(self): 

        super(LeNet, self).__init__() 

        # 3 input image channel, 6 output feature maps and 5x5 conv kernel 

        self.cn1 = nn.Conv2d(3, 6, 5) 

        # 6 input image channel, 16 output feature maps and 5x5 conv kernel 

        self.cn2 = nn.Conv2d(6, 16, 5) 

        # fully connected layers of size 120, 84 and 10 

        self.fc1 = nn.Linear(16 * 5 * 5, 120)  # 5*5 is the spatial dimension at this layer 

        self.fc2 = nn.Linear(120, 84) 

        self.fc3 = nn.Linear(84, 10) 

    def forward(self, x): 

        # Convolution with 5x5 kernel 

        x = F.relu(self.cn1(x)) 

        # Max pooling over a (2, 2) window 

        x = F.max_pool2d(x, (2, 2)) 

        # Convolution with 5x5 kernel 

        x = F.relu(self.cn2(x)) 

        # Max pooling over a (2, 2) window 

        x = F.max_pool2d(x, (2, 2)) 

        # Flatten spatial and depth dimensions into a single vector 

        x = x.view(-1, self.flattened_features(x)) 

        # Fully connected operations 

        x = F.relu(self.fc1(x)) 

        x = F.relu(self.fc2(x)) 

        x = self.fc3(x) 

        return x 

    def flattened_features(self, x): 

        # all except the first (batch) dimension 

        size = x.size()[1:]  

        num_feats = 1 

        for s in size: 

            num_feats *= s 



        return num_feats 

lenet = LeNet() 

print(lenet)

In the last two lines, we instantiate the model and print the network architecture. The
output will be as follows:

Figure 3.7 – LeNet PyTorch model object

There are the usual __init__  and forward  methods for architecture definition and running
a forward pass, respectively. The additional flattened_features  method is meant to
calculate the total number of features in an image representation layer (usually an output
of a convolutional layer or pooling layer). This method helps to flatten the spatial
representation of features into a single vector of numbers, which is then used as input to
fully connected layers.

Besides the details of the architecture mentioned earlier, ReLU is used throughout the
network as the activation function. Also, contrary to the original LeNet network, which
takes in single-channel images, the current model is modified to accept RGB images, that
is, three channels as input. This is done in order to adapt to the dataset that is used for
this exercise.

1. We then define the training routine, that is, the actual backpropagation step:

def train(net, trainloader, optim, epoch): 

    # initialize loss 

    loss_total = 0.0 

     for i, data in enumerate(trainloader, 0): 

        # get the inputs; data is a list of [inputs, labels] 

        # ip refers to the input images, and ground_truth refers to the output classes the image

        ip, ground_truth = data 

        # zero the parameter gradients 

        optim.zero_grad() 

        # forward-pass + backward-pass + optimization -step 

        op = net(ip) 

        loss = nn.CrossEntropyLoss()(op, ground_truth) 

        loss.backward() 

        optim.step() 

        # update loss 

        loss_total += loss.item() 

         # print loss statistics 

        if (i+1) % 1000 == 0:    # print at the interval of 1000 mini-batches 

            print('[Epoch number : %d, Mini-batches: %5d] loss: %.3f' % (epoch + 1, i + 1, loss_

            loss_total = 0.0

For each epoch, this function iterates through the entire training dataset, runs a forward
pass through the network and, using backpropagation, updates the parameters of the
model based on the specified optimizer. After iterating through every 1,000 mini-batches
of the training dataset, this method also logs the calculated loss.

1. Similar to the training routine, we will define the test routine that we will use to
evaluate model performance:



def test(net, testloader): 

    success = 0 

    counter = 0 

    with torch.no_grad(): 

        for data in testloader: 

            im, ground_truth = data 

            op = net(im) 

            _, pred = torch.max(op.data, 1) 

            counter += ground_truth.size(0) 

            success += (pred == ground_truth).sum().item() 

    print('LeNet accuracy on 10000 images from test dataset: %d %%' % (100 * success / counter))

This function runs a forward pass through the model for each test-set image, calculates
the correct number of predictions, and prints the percentage of correct predictions on the
test set.

1. Before we get on to training the model, we need to load the dataset. For this exercise,
we will be using the CIFAR-10  dataset.

Dataset citation

Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009

This dataset consists of 60,000 32x32 RGB images labeled across 10 classes, with 6,000
images per class. The 60,000 images are split into 50,000 training images and 10,000 test
images. More details can be found at the dataset website [3.2] . Torch provides the CIFAR
dataset under the torchvision.datasets  module. We will be using the module to directly
load the data and instantiate train and test dataloaders as demonstrated in the following
code:

# The mean and std are kept as 0.5 for normalizing pixel values as the pixel values are original

train_transform = transforms.Compose([transforms.RandomHorizontalFlip(), 

transforms.RandomCrop(32, 4),

transforms.ToTensor(), 

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) 

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=trai

trainloader = torch.utils.data.DataLoader(trainset, batch_size=8, shuffle=True) 

test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5)

testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=test_

testloader = torch.utils.data.DataLoader(testset, batch_size=10000, shuffle=False) 

# ordering is important 

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

Note

In the previous chapter, we manually downloaded the dataset and wrote a custom
dataset class and a dataloader  function. We will not need to write those here,
thanks to the torchvision.datasets  module.

Because we set the download  flag to True , the dataset will be downloaded locally. Then, we
shall see the following output :

Figure 3.8 – CIFAR-10 dataset download



The transformations used for training and testing datasets are different because we apply
some data augmentation to the training dataset, such as flipping and cropping, which are
not applicable to the test dataset. Also, after defining trainloader  and testloader , we
declare the 10 classes in this dataset with a pre-defined ordering.

1. After loading the datasets, let's investigate how the data looks:

# define a function that displays an image 

def imageshow(image): 

    # un-normalize the image 

    image = image/2 + 0.5      

    npimage = image.numpy() 

    plt.imshow(np.transpose(npimage, (1, 2, 0))) 

    plt.show() 

# sample images from training set 

dataiter = iter(trainloader) 

images, labels = dataiter.next() 

# display images in a grid 

num_images = 4 

imageshow(torchvision.utils.make_grid(images[:num_images])) 

# print labels 

print('    '+'  ||  '.join(classes[labels[j]] for j in range(num_images)))

The preceding code shows us four sample images with their respective labels from the
training dataset. The output will be as follows:

Figure 3.9 – CIFAR-10 dataset samples

The preceding output shows us four color images, which are 32x32 pixels in size. These
four images belong to four different labels, as displayed in the text following the images.

We will now train the LeNet model.

Training LeNet

Let us train the model with the help of the following steps:

1. We will define the optimizer  and start the training loop as shown here:

# define optimizer 

optim = torch.optim.Adam(lenet.parameters(), lr=0.001) 

# training loop over the dataset multiple times 



for epoch in range(50):   

    train(lenet, trainloader, optim, epoch) 

    print() 

    test(lenet, testloader) 

    print() 

print('Finished Training')

The output will be as follows:

Figure 3.10 – Training LeNet

1. Once the training is finished, we can save the model file locally:

model_path = './cifar_model.pth' 

torch.save(lenet.state_dict(), model_path)

Having trained the LeNet model, we will now test its performance on the test dataset in
the next section.

Testing LeNet

The following steps need to be followed to test the LeNet model:



1. Let's make predictions by loading the saved model and running it on the test dataset:

# load test dataset images 

d_iter = iter(testloader) 

im, ground_truth = d_iter.next() 

# print images and ground truth 

imageshow(torchvision.utils.make_grid(im[:4])) 

print('Label:      ', ' '.join('%5s' % classes[ground_truth[j]] for j in range(4))) 

# load model 

lenet_cached = LeNet() 

lenet_cached.load_state_dict(torch.load(model_path)) 

# model inference 

op = lenet_cached(im) 

# print predictions 

_, pred = torch.max(op, 1) 

print('Prediction: ', ' '.join('%5s' % classes[pred[j]] for j in range(4)))

The output will be as follows:

Figure 3.11 – LeNet predictions

Evidently, three out of four predictions are correct.

1. Finally, we will check the overall accuracy of this model on the test dataset as well as
per- class accuracy:

success = 0 

counter = 0 

with torch.no_grad(): 

    for data in testloader: 

        im, ground_truth = data 

        op = lenet_cached(im)

        _, pred = torch.max(op.data, 1) 

        counter += ground_truth.size(0) 

        success += (pred == ground_truth).sum().item() 

print('Model accuracy on 10000 images from test dataset: %d %%' % ( 

    100 * success / counter))

The output will be as follows:



Figure 3.12 – LeNet overall accuracy

1. For per- class accuracy, the code is as follows:

class_sucess = list(0. for i in range(10)) 

class_counter = list(0. for i in range(10)) 

with torch.no_grad(): 

    for data in testloader: 

        im, ground_truth = data 

        op = lenet_cached(im)

        _, pred = torch.max(op, 1) 

        c = (pred == ground_truth).squeeze() 

        for i in range(10000): 

            ground_truth_curr = ground_truth[i] 

            class_sucess[ground_truth_curr] += c[i].item() 

            class_counter[ground_truth_curr] += 1 

for i in range(10): 

    print('Model accuracy for class %5s : %2d %%' % ( 

        classes[i], 100 * class_sucess[i] / class_counter[i]))

The output will be as follows:

Figure 3.13 – LeNet per class accuracy

Some classes have better performance than others. Overall, the model is far from perfect
(that is, 100% accuracy) but much better than a model making random predictions, which
would have an accuracy of 10% (due to the 10 classes).

Having built a LeNet model from scratch and evaluated its performance using PyTorch,
we will now move on to a successor of LeNet – AlexNet. For LeNet, we built the model
from scratch, trained, and tested it. For AlexNet, we will use a pre-trained model, fine-
tune it on a smaller dataset, and test it.



Fine-tuning the AlexNet model

In this section, we will first take a quick look at the AlexNet architecture and how to build
one using PyTorch. Then we will explore PyTorch's pre-trained CNN models repository,
and finally, use a pre-trained AlexNet model for fine-tuning on an image classification
task, as well as making predictions.

AlexNet is a successor of LeNet with incremental changes in the architecture, such as 8
layers (5 convolutional and 3 fully connected) instead of 5, and 60 million model
parameters instead of 60,000, as well as using MaxPool  instead of AvgPool . Moreover,
AlexNet was trained and tested on a much bigger dataset – ImageNet, which is over 100
GB in size, as opposed to the MNIST dataset (on which LeNet was trained), which
amounts to a few MBs. AlexNet truly revolutionized CNNs as it emerged as a significantly
more powerful class of models on image-related tasks than the other classical machine
learning models, such as SVMs. Figure 3.14 shows the AlexNet architecture:

Figure 3.14 – AlexNet architecture

As we can see, the architecture follows the common theme from LeNet of having
convolutional layers stacked sequentially, followed by a series of fully connected layers
toward the output end. PyTorch makes it easy to translate such a model architecture into



actual code. This can be seen in the following PyTorch code- equivalent of the
architecture:

class AlexNet(nn.Module): 

    def __init__(self, number_of_classes): 

        super(AlexNet, self).__init__() 

        self.feats = nn.Sequential( 

            nn.Conv2d(in_channels=3, out_channels=64, kernel_size=11, stride=4, padding=5), 

            nn.ReLU(), 

            nn.MaxPool2d(kernel_size=2, stride=2), 

            nn.Conv2d(in_channels=64, out_channels=192, kernel_size=5, padding=2), 

            nn.ReLU(), 

            nn.MaxPool2d(kernel_size=2, stride=2), 

            nn.Conv2d(in_channels=192, out_channels=384, kernel_size=3, padding=1), 

            nn.ReLU(), 

            nn.Conv2d(in_channels=384, out_channels=256, kernel_size=3, padding=1), 

            nn.ReLU(), 

            nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1), 

            nn.ReLU(), 

            nn.MaxPool2d(kernel_size=2, stride=2), 

        ) 

        self.clf = nn.Linear(in_features=256, out_features=number_of_classes) 

    def forward(self, inp): 

        op = self.feats(inp) 

        op = op.view(op.size(0), -1) 

        op = self.clf(op) 

        return op

The code is quite self-explanatory, wherein the __init__  function contains the initialization
of the whole layered structure, consisting of convolutional, pooling, and fully connected
layers, along with ReLU activations. The forward  function simply runs a data point x
through this initialized network. Please note that the second line of the forward  method
already performs the flattening operation so that we need not define that function
separately as we did for LeNet.

But besides the option of initializing the model architecture and training it ourselves,
PyTorch, with its torchvision  package, provides a models  sub-package, which contains
definitions of CNN models meant for solving different tasks, such as image classification,
semantic segmentation, object detection, and so on. Following is a non-exhaustive list of
available models for the task of image classification [3.3] :

AlexNet
VGG
ResNet
SqueezeNet
DenseNet
Inception v3
GoogLeNet
ShuffleNet v2
MobileNet v2
ResNeXt
Wide ResNet
MNASNet
EfficientNet

In the next section, we will use a pre-trained AlexNet model as an example and
demonstrate how to fine-tune it using PyTorch in the form of an exercise.

Using PyTorch to fine-tune AlexNet



In the following exercise, we will load a pre-trained AlexNet model and fine-tune it on an
image classification dataset different from ImageNet (on which it was originally trained).
Finally, we will test the fine-tuned model's performance to see if it could transfer-learn
from the new dataset. Some parts of the code in the exercise are trimmed for readability
but you can find the full code in our github repo [3.4] :

For this exercise, we will need to import a few dependencies. Execute the following import
statements:

import os 

import time 

import copy 

import numpy as np 

import matplotlib.pyplot as plt 

import torch 

import torchvision 

import torch.nn as nn 

import torch.optim as optim 

from torch.optim import lr_scheduler 

from torchvision import datasets, models, transforms 

torch.use_deterministic_algorithms(True)     

Next, we will download and transform the dataset. For this fine-tuning exercise, we will
use a small image dataset of bees and ants. There are 240 training images and 150
validation images divided equally between the two classes (bees and ants).

We download the dataset from kaggel [3.5] and store it in the current working directory.
More information about the dataset can be found at the dataset’s website[3.6] .

Dataset citation

Elsik CG, Tayal A, Diesh CM, Unni DR, Emery ML, Nguyen HN, Hagen DE.
Hymenoptera Genome Database: integrating genome annotations in
HymenopteraMine. Nucleic Acids Research 2016 Jan 4;44(D1):D793-800. doi:
10.1093/nar/gkv1208. Epub 2015 Nov 17. PubMed PMID: 26578564.

In order to download the dataset, you will need to log into Kaggle. If you do not already
have a Kaggle account, you will need to register:

ddir = 'hymenoptera_data' 

# Data normalization and augmentation transformations for train dataset 

# Only normalization transformation for validation dataset 

# The mean and std for normalization are calculated as the mean of all pixel values for all imag

data_transformers = { 

    'train': transforms.Compose([transforms.RandomResizedCrop(224), transforms.RandomHorizontalF

                                    transforms.ToTensor(), 

                                    transforms.Normalize([0.490, 0.449, 0.411], [0.231, 0.221, 0

    'val': transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToT

img_data = {k: datasets.ImageFolder(os.path.join(ddir, k), data_transformers[k]) for k in ['trai

dloaders = {k: torch.utils.data.DataLoader(img_data[k], batch_size=8, shuffle=True) 

            for k in ['train', 'val']} 

dset_sizes = {x: len(img_data[x]) for x in ['train', 'val']} 

classes = img_data['train'].classes 

dvc = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

Now that we have completed the pre-requisites, let's begin:

1. Let's visualize some sample training dataset images:

def imageshow(img, text=None): 

    img = img.numpy().transpose((1, 2, 0)) 

    avg = np.array([0.490, 0.449, 0.411]) 



    stddev = np.array([0.231, 0.221, 0.230]) 

    img = stddev * img + avg 

    img = np.clip(img, 0, 1) 

    plt.imshow(img) 

    if text is not None: 

        plt.title(text) 

# Generate one train dataset batch 

imgs, cls = next(iter(dloaders['train'])) 

# Generate a grid from batch 

grid = torchvision.utils.make_grid(imgs) 

imageshow(grid, text=[classes[c] for c in cls])

The output will be as follows:

Figure 3.15 – Bees versus ants dataset

1. We now define the fine-tuning routine, which is essentially a training routine
performed on a pre-trained model:

def finetune_model(pretrained_model, loss_func, optim, epochs=10): 

    ... 

    for e in range(epochs): 

        for dset in ['train', 'val']: 

            if dset == 'train': 

                pretrained_model.train()  # set model to train mode (i.e. trainbale weights) 

            else: 

                pretrained_model.eval()   # set model to validation mode 

            # iterate over the (training/validation) data. 

            for imgs, tgts in dloaders[dset]: 

                ... 

                optim.zero_grad() 

                with torch.set_grad_enabled(dset == 'train'): 

                    ops = pretrained_model(imgs) 

                    _, preds = torch.max(ops, 1) 

                    loss_curr = loss_func(ops, tgts) 

                    # backward pass only if in training mode 

                    if dset == 'train': 

                        loss_curr.backward() 

                        optim.step() 

                loss += loss_curr.item() * imgs.size(0) 

                successes += torch.sum(preds == tgts.data) 

            loss_epoch = loss / dset_sizes[dset] 

            accuracy_epoch = successes.double() / dset_sizes[dset] 

            if dset == 'val' and accuracy_epoch > accuracy: 

                accuracy = accuracy_epoch 

                model_weights = copy.deepcopy(pretrained_model.state_dict()) 

    # load the best model version (weights) 

    pretrained_model.load_state_dict(model_weights) 

    return pretrained_model

In this function, we require the pre-trained model (that is, the architecture as well as
weights) as input along with the loss function, optimizer, and number of epochs. Basically,
instead of starting from a random initialization of weights, we start with the pre-trained



weights of AlexNet. The other parts of this function are pretty similar to our previous
exercises.

1. Before starting to fine-tune (train) the model, we will define a function to visualize the
model predictions:

def visualize_predictions(pretrained_model, max_num_imgs=4): 

    was_model_training = pretrained_model.training 

    pretrained_model.eval() 

    imgs_counter = 0 

    fig = plt.figure() 

    with torch.no_grad(): 

        for i, (imgs, tgts) in enumerate(dloaders['val']): 

            imgs = imgs.to(dvc) 

            tgts = tgts.to(dvc) 

            ops = pretrained_model(imgs) 

            _, preds = torch.max(ops, 1) 

             for j in range(imgs.size()[0]): 

                imgs_counter += 1 

                ax = plt.subplot(max_num_imgs//2, 2, imgs_counter) 

                ax.axis('off') 

                ax.set_title(f'Prediction: {class_names[preds[j]]}, Ground Truth: {class_names[t

                imshow(inputs.cpu().data[j]) 

                if imgs_counter == max_num_imgs: 

pretrained_model.train(mode=was_training) 

                    return 

        model.train(mode=was_training)

1. Finally, we get to the interesting part. Let's use PyTorch's torchvision.models  sub-
package to load the pre-trained AlexNet model:

model_finetune = models.alexnet(pretrained=True)

This model object has the following two main components:

i) features : The feature extraction component, which contains all the convolutional and
pooling layers

ii) classifier : The classifier block, which contains all the fully connected layers leading to
the output layer

1. We can visualize these components as shown here:

print(model_finetune.features)

This should output the following:



Figure 3.16 – AlexNet feature extractor

1. Next , we inspect the classifier  block as follows:

print(model_finetune.classifier)

This should output the following:

Figure 3.17 – AlexNet classifier

1. As you may have noticed, the pre-trained model has the output layer of size 1000 , but
we only have 2  classes in our fine-tuning dataset. So, we shall alter that, as shown
here:

# change the last layer from 1000 classes to 2 classes 

model_finetune.classifier[6] = nn.Linear(4096, len(classes))

1. And now, we are all set to define the optimizer and loss function, and thereafter run
the training routine as follows:

loss_func = nn.CrossEntropyLoss() 

optim_finetune = optim.SGD(model_finetune.parameters(), lr=0.0001) 

# train (fine-tune) and validate the model 

model_finetune = finetune_model(model_finetune, loss_func, optim_finetune, epochs=10)

The output will be as follows:



Figure 3.18 – AlexNet fine-tuning loop

1. Let's visualize some of the model predictions to see whether the model has indeed
learned the relevant features from this small dataset:

visualize_predictions(model_finetune)

This should output the following:



Figure 3.19 – AlexNet predictions

Clearly, the pretrained AlexNet model has been able to transfer-learn on this rather tiny
image classification dataset. This both demonstrates the power of transfer learning as
well as the speed and ease with which we can fine-tune well known models using PyTorch.

In the next section, we will discuss an even deeper and more complex successor of
AlexNet – the VGG network. We have demonstrated the model definition, dataset loading,
model training (or fine-tuning), and evaluation steps in detail for LeNet and AlexNet. In
subsequent sections, we will focus mostly on model architecture definition, as the PyTorch
code for other aspects (such as data loading and evaluation) will be similar.

Running a pre-trained VGG model

We have already discussed LeNet and AlexNet, two of the foundational CNN
architectures. As we progress in the chapter, we will explore increasingly complex CNN
models. Although, the key principles in building these model architectures will be the
same. We will see a modular model-building approach in putting together convolutional
layers, pooling layers, and fully connected layers into blocks/modules and then stacking
these blocks sequentially or in a branched manner. In this section, we look at the
successor to AlexNet – VGGNet.

The name VGG is derived from the Visual Geometry Group of Oxford University,
where this model was invented. Compared to the 8 layers and 60 million parameters of
AlexNet, VGG consists of 13 layers (10 convolutional layers and 3 fully connected layers)



and 138 million parameters. VGG basically stacks more layers onto the AlexNet
architecture with smaller size convolution kernels (2x2 or 3x3). Hence, VGG's novelty lies
in the unprecedented level of depth that it brings with its architecture. Figure 3.20 shows
the VGG architecture:

Figure 3.20 – VGG16 architecture

The preceding VGG architecture is called VGG13, because of the 13 layers. Other
variants are VGG16 and VGG19, consisting of 16 and 19 layers, respectively. There is
another set of variants – VGG13_bn, VGG16_bn, and VGG19_bn, where bn suggests
that these models also consist of batch-normalization layers.

PyTorch's torchvision.model  sub-package provides the pre-trained VGG  model (with all of
the six variants discussed earlier) trained on the ImageNet dataset. In the following
exercise, we will use the pre-trained VGG13  model to make predictions on a small dataset
of bees and ants (used in the previous exercise). We will focus on the key pieces of code



here, as most other parts of our code will overlap with that of the previous exercises. We
can always refer to our notebooks to explore the full code [3.7]:

1. First, we need to import dependencies, including torchvision.models .
2. Download the data and set up the ants and bees dataset and dataloader, along with

the transformations.
3. In order to make predictions on these images, we will need to download the 1,000

labels of the ImageNet dataset [3.8] .
4. Once downloaded, we need to create a mapping between the class indices 0 to 999

and the corresponding class labels, as shown here:

import ast 

with open('./imagenet1000_clsidx_to_labels.txt') as f: 

    classes_data = f.read() 

classes_dict = ast.literal_eval(classes_data) 

print({k: classes_dict[k] for k in list(classes_dict)[:5]})

This should output the first five class mappings, as shown in the following screenshot:

Figure 3.21 – ImageNet class mappings

1. Define the model prediction visualization function that takes in the pre-trained model
object and the number of images to run predictions on. This function should output
the images with predictions.

2. Load the pretrained VGG13  model:

model_finetune = models.vgg13(pretrained=True)

This should output the following:

Figure 3.22 – Loading the VGG13 model

The VGG13  model is downloaded in this step.

FAQ - What is the disk size of VGG13 model?

VGG13 model will consume roughly 508 MB on your hard disk.

1. Finally, we run predictions on our ants and bees dataset using this pre-trained model:

visualize_predictions(model_finetune)

This should output the following:



Figure 3.23 – VGG13 predictions

The VGG13  model trained on an entirely different dataset seems to predict all the test
samples correctly in the ants and bees dataset. Basically, the model grabs the two most
similar animals from the dataset out of the 1,000 classes and finds them in the images. By
doing this exercise, we see that the model is still able to extract relevant visual features
out of the images and the exercise demonstrates the utility of PyTorch's out-of-the-box
inference feature.

In the next section, we are going to study a different type of CNN architecture – one that
involves modules that have multiple parallel convolutional layers. The modules are called
Inception modules and the resulting network is called the Inception network. We will
explore the various parts of this network and the reasoning behind its success. We will
also build the inception modules and the Inception network architecture using PyTorch.

Exploring GoogLeNet and Inception v3

As we have discovered the progression of CNN models from LeNet to VGG so far, we have
observed the sequential stacking of more convolutional and fully connected layers. This
resulted in deep networks with a lot of parameters to train. GoogLeNet emerged as a
radically different type of CNN architecture that is composed of a module of parallel
convolutional layers called the inception module. Because of this, GoogLeNet is also
called Inception v1 (v1 marked the first version as more versions came along later).
Some of the drastically new elements introduced in GoogLeNet were the following:



The inception module – a module of several parallel convolutional layers
Using 1x1 convolutions to reduce the number of model parameters
Global average pooling instead of a fully connected layer – reduces overfitting
Using auxiliary classifiers for training – for regularization and gradient stability

GoogLeNet has 22 layers, which is more than the number of layers of any VGG model
variant. Yet, due to some of the optimization tricks used, the number of parameters in
GoogLeNet is 5 million, which is far less than the 138 million parameters of VGG. Let's
expand on some of the key features of this model.

Inception modules

Perhaps the single most important contribution of this model was the development of a
convolutional module with several convolutional layers running in parallel, which are
finally concatenated to produce a single output vector. These parallel convolutional layers
operate with different kernel sizes ranging from 1x1 to 3x3 to 5x5. The idea is to extract
all levels of visual information from the image. Besides these convolutions, a 3x3 max-
pooling layer adds another level of feature extraction. Figure 3.24 shows the inception
block diagram along with the overall GoogLeNet architecture:



Figure 3.24 – GoogLeNet architecture

By using this architecture diagram, we can build the inception module in PyTorch as
shown here:

class InceptionModule(nn.Module): 

    def __init__(self, input_planes, n_channels1x1, n_channels3x3red, n_channels3x3, n_channels5

        super(InceptionModule, self).__init__() 

        # 1x1 convolution branch 

        self.block1 = nn.Sequential( 

            nn.Conv2d(input_planes, n_channels1x1, kernel_size=1),nn.BatchNorm2d(n_channels1x1),

        # 1x1 convolution -> 3x3 convolution branch 

        self.block2 = nn.Sequential( 

            nn.Conv2d(input_planes, n_channels3x3red, kernel_size=1),nn.BatchNorm2d(n_channels3x

            nn.ReLU(True),nn.Conv2d(n_channels3x3red, n_channels3x3, kernel_size=3, padding=1),n

        # 1x1 conv -> 5x5 conv branch 

        self.block3 = nn.Sequential( 

            nn.Conv2d(input_planes, n_channels5x5red, kernel_size=1),nn.BatchNorm2d(n_channels5x

            nn.Conv2d(n_channels5x5red, n_channels5x5, kernel_size=3, padding=1),nn.BatchNorm2d(

            nn.Conv2d(n_channels5x5, n_channels5x5, kernel_size=3, padding=1),nn.BatchNorm2d(n_c



            nn.ReLU(True),) 

        # 3x3 pool -> 1x1 conv branch 

        self.block4 = nn.Sequential( 

            nn.MaxPool2d(3, stride=1, padding=1), 

            nn.Conv2d(input_planes, pooling_planes, kernel_size=1), 

            nn.BatchNorm2d(pooling_planes), 

            nn.ReLU(True),) 

    def forward(self, ip): 

        op1 = self.block1(ip)

        op2 = self.block2(ip)

        op3 = self.block3(ip)

        op4 = self.block4(ip)

        return torch.cat([op1,op2,op3,op4], 1)

Next, we will look at another important feature of GoogLeNet – 1x1 convolutions.

1x1 convolutions

In addition to the parallel convolutional layers in an inception module, each parallel layer
has a preceding 1x1 convolutional layer. The reason behind using these 1x1
convolutional layers is dimensionality reduction. 1x1 convolutions do not change the width
and height of the image representation but can alter the depth of an image
representation. This trick is used to reduce the depth of the input visual features before
performing the 1x1, 3x3, and 5x5 convolutions parallelly. Reducing the number of
parameters not only helps build a lighter model but also combats overfitting.

Global average pooling

If we look at the overall GoogLeNet architecture in Figure 3.24, the penultimate output
layer of the model is preceded by a 7x7 average pooling layer. This layer again helps in
reducing the number of parameters of the model, thereby reducing overfitting. Without
this layer, the model would have millions of additional parameters due to the dense
connections of a fully connected layer.

Auxiliary classifiers

Figure 3.24 also shows two extra or auxiliary output branches in the model. These
auxiliary classifiers are supposed to tackle the vanishing gradient problem by adding to
the gradients' magnitude during backpropagation, especially for the layers towards the
input end. Because these models have a large number of layers, vanishing gradients can
become a bottleneck. Hence, using auxiliary classifiers has proven useful for this 22-layer
deep model. Additionally, the auxiliary branches also help in regularization. Please note
that these auxiliary branches are switched off/discarded while making predictions.

Once we have the inception module defined using PyTorch, we can easily instantiate the
entire Inception v1 model as follows:

class GoogLeNet(nn.Module): 

    def __init__(self): 

        super(GoogLeNet, self).__init__() 

        self.stem = nn.Sequential( 

            nn.Conv2d(3, 192, kernel_size=3, padding=1), 

            nn.BatchNorm2d(192), 

            nn.ReLU(True),) 

        self.im1 = InceptionModule(192,  64,  96, 128, 16, 32, 32) 

        self.im2 = InceptionModule(256, 128, 128, 192, 32, 96, 64) 

        self.max_pool = nn.MaxPool2d(3, stride=2, padding=1) 

        self.im3 = InceptionModule(480, 192,  96, 208, 16,  48,  64) 

        self.im4 = InceptionModule(512, 160, 112, 224, 24,  64,  64) 



        self.im5 = InceptionModule(512, 128, 128, 256, 24,  64,  64) 

        self.im6 = InceptionModule(512, 112, 144, 288, 32,  64,  64) 

        self.im7 = InceptionModule(528, 256, 160, 320, 32, 128, 128) 

        self.im8 = InceptionModule(832, 256, 160, 320, 32, 128, 128) 

        self.im9 = InceptionModule(832, 384, 192, 384, 48, 128, 128) 

        self.average_pool = nn.AvgPool2d(7, stride=1) 

        self.fc = nn.Linear(4096, 1000) 

    def forward(self, ip): 

        op = self.stem(ip) 

        out = self.im1(op) 

        out = self.im2(op) 

        op = self.maxpool(op)

        op = self.a4(op) 

        op = self.b4(op) 

        op = self.c4(op) 

        op = self.d4(op) 

        op = self.e4(op) 

        op = self.max_pool(op) 

        op = self.a5(op) 

        op = self.b5(op) 

        op = self.avgerage_pool(op) 

        op = op.view(op.size(0), -1) 

        op = self.fc(op) 

        return op

Besides instantiating our own model, we can always load a pre-trained GoogLeNet with
just two lines of code:

import torchvision.models as models 

model = models.googlenet(pretrained=True)

Finally, as mentioned earlier, a number of versions of the Inception model were developed
later. One of the eminent ones was Inception v3, which we will briefly discuss next.

Inception v3

This successor of Inception v1 has a total of 24 million parameters as compared to 5
million in v1. Besides the addition of several more layers, this model introduced different
kinds of inception modules, which are stacked sequentially. Figure 3.25 shows the
different inception modules and the full model architecture:



Fig 3.25 – Inception v3 architecture

It can be seen from the architecture that this model is an architectural extension of the
Inception v1 model. Once again, besides building the model manually, we can use the pre-
trained model from PyTorch's repository as follows:

import torchvision.models as models 

model = models.inception_v3(pretrained=True)

In the next section, we will go through the classes of CNN models that have effectively
combatted the vanishing gradient problem in very deep CNNs – ResNet and DenseNet.
We will learn about the novel techniques of skip connections and dense connections and
use PyTorch to code the fundamental modules behind these advanced architectures.

Discussing ResNet and DenseNet architectures



In the previous section, we explored the Inception models, which had a reduced number
of model parameters as the number of layers increased, thanks to the 1x1 convolutions
and global average pooling. Furthermore, auxiliary classifiers were used to combat the
vanishing gradient problem.

ResNet introduced the concept of skip connections. This simple yet effective trick
overcomes the problem of both parameter overflow and vanishing gradients. The idea, as
shown in the following diagram, is quite simple. The input is first passed through a non-
linear transformation (convolutions followed by non-linear activations) and then the
output of this transformation (referred to as the residual) is added to the original input.
Each block of such computation is called a residual block, hence the name of the model –
residual network or ResNet.

Figure 3.26 – Skip connections

Using these skip (or shortcut) connections, the number of parameters is limited to 26
million parameters for a total of 50 layers (ResNet-50). Due to the limited number of
parameters, ResNet has been able to generalize well without overfitting even when the
number of layers is increased to 152 (ResNet-152). The following diagram shows the
ResNet-50 architecture:



Figure 3.27 – ResNet architecture

There are two kinds of residual blocks – convolutional and identity, both having skip
connections. For the convolutional block, there is an added 1x1 convolutional layer, which
further helps to reduce dimensionality. A residual block for ResNet can be implemented in
PyTorch as shown here:

class BasicBlock(nn.Module): 

    multiplier=1 

    def __init__(self, input_num_planes, num_planes, strd=1): 

        super(BasicBlock, self).__init__() 

        self.conv_layer1 = nn.Conv2d(in_channels=input_num_planes, out_channels=num_planes, kern

        self.batch_norm1 = nn.BatchNorm2d(num_planes) 

        self.conv_layer2 = nn.Conv2d(in_channels=num_planes, out_channels=num_planes, kernel_siz

        self.batch_norm2 = nn.BatchNorm2d(num_planes) 

        self.res_connnection = nn.Sequential() 

        if strd > 1 or input_num_planes != self.multiplier*num_planes: 

            self.res_connnection = nn.Sequential( 

                nn.Conv2d(in_channels=input_num_planes, out_channels=self.multiplier*num_planes, 



                nn.BatchNorm2d(self.multiplier*num_planes)) 

    def forward(self, inp): 

        op = F.relu(self.batch_norm1(self.conv_layer1(inp))) 

        op = self.batch_norm2(self.conv_layer2(op)) 

        op += self.res_connnection(inp) 

        op = F.relu(op) 

        return op

To get started quickly with ResNet, we can always use the pre-trained ResNet model from
PyTorch's repository:

import torchvision.models as models 

model = models.resnet50(pretrained=True)

ResNet uses the identity function (by directly connecting input to output) to preserve the
gradient during backpropagation (as the gradient will be 1). Yet, for extremely deep
networks, this principle might not be sufficient to preserve strong gradients from the
output layer back to the input layer.

The CNN model we will discuss next is designed to ensure a strong gradient flow, as well
as a further reduction in the number of required parameters.

DenseNet

The skip connections of ResNet connected the input of a residual block directly to its
output. However, the inter-residual-blocks connection is still sequential, that is, residual
block number 3 has a direct connection with block 2 but no direct connection with block
1.

DenseNet, or dense networks, introduced the idea of connecting every convolutional layer
with every other layer within what is called a dense block. And every dense block is
connected to every other dense block in the overall DenseNet. A dense block is simply a
module of two 3x3 densely connected convolutional layers.

These dense connections ensure that every layer is receiving information from all of the
preceding layers of the network. This ensures that there is a strong gradient flow from the
last layer down to the very first layer. Counterintuitively, the number of parameters of
such a network setting will also be low. As every layer is receiving the feature maps from
all the previous layers, the required number of channels (depth) can be fewer. In the
earlier models, the increasing depth represented the accumulation of information from
earlier layers, but we don't need that anymore, thanks to the dense connections
everywhere in the network.

One key difference between ResNet and DenseNet is also that, in ResNet, the input was
added to the output using skip connections. But in the case of DenseNet, the preceding
layers' outputs are concatenated with the current layer's output. And the concatenation
happens in the depth dimension.

This might raise a question about the exploding size of outputs as we proceed further in
the network. To combat this compounding effect, a special type of block called the
transition block is devised for this network. Composed of a 1x1 convolutional layer
followed by a 2x2 pooling layer, this block standardizes or resets the size of the depth
dimension so that the output of this block can then be fed to the subsequent dense
block(s). The following diagram shows the DenseNet architecture:



Figure 3.28 – DenseNet architecture

As mentioned earlier, there are two types of blocks involved – the dense block and the
transition block. These blocks can be written as classes in PyTorch in a few lines of
code, as shown here:

class DenseBlock(nn.Module): 

    def __init__(self, input_num_planes, rate_inc): 

        super(DenseBlock, self).__init__() 

        self.batch_norm1 = nn.BatchNorm2d(input_num_planes) 

        self.conv_layer1 = nn.Conv2d(in_channels=input_num_planes, out_channels=4*rate_inc, kern

        self.batch_norm2 = nn.BatchNorm2d(4*rate_inc) 

        self.conv_layer2 = nn.Conv2d(in_channels=4*rate_inc, out_channels=rate_inc, kernel_size=

    def forward(self, inp): 

        op = self.conv_layer1(F.relu(self.batch_norm1(inp))) 

        op = self.conv_layer2(F.relu(self.batch_norm2(op))) 

        op = torch.cat([op,inp], 1) 

        return op 

class TransBlock(nn.Module): 

    def __init__(self, input_num_planes, output_num_planes): 



        super(TransBlock, self).__init__() 

        self.batch_norm = nn.BatchNorm2d(input_num_planes) 

        self.conv_layer = nn.Conv2d(in_channels=input_num_planes, out_channels=output_num_planes

    def forward(self, inp): 

        op = self.conv_layer(F.relu(self.batch_norm(inp))) 

        op = F.avg_pool2d(op, 2) 

        return op

These blocks are then stacked densely to form the overall DenseNet architecture.
DenseNet, like ResNet, comes in variants such as DenseNet121, DenseNet161,
DenseNet169, and DenseNet201, where the numbers represent the total number of
layers. Such large numbers of layers are obtained by the repeated stacking of the dense
and transition blocks plus a fixed 7x7 convolutional layer at the input end and a fixed fully
connected layer at the output end. PyTorch provides pre-trained models for all of these
variants:

import torchvision.models as models 

densenet121 = models.densenet121(pretrained=True) 

densenet161 = models.densenet161(pretrained=True) 

densenet169 = models.densenet169(pretrained=True) 

densenet201 = models.densenet201(pretrained=True)

DenseNet outperforms all the models discussed so far on the ImageNet dataset. Various
hybrid models have been developed by mixing and matching the ideas presented in the
previous sections. The Inception-ResNet and ResNeXt models are examples of such hybrid
networks. The following diagram shows the ResNeXt architecture:



Figure 3.29 – ResNeXt architecture

As you can see, it looks like a wider variant of a ResNet + Inception hybrid because there
is a large number of parallel convolutional branches in the residual blocks – and the idea
of parallelism is derived from the inception network.

In the next and last section of this chapter, we are going to look at the current best
performing CNN architectures – EfficientNets. We will also discuss the future of CNN
architectural development while touching upon the use of CNN architectures for tasks
beyond image classification.

Understanding EfficientNets and the future of CNN architectures

So far in our exploration from LeNet to DenseNet, we have noticed an underlying theme
in the advancement of CNN architectures. That theme is the expansion or scaling of the
CNN model through one of the following:



An increase in the number of layers
An increase in the number of feature maps or channels in a convolutional layer
An increase in the spatial dimension going from 32x32 pixel images in LeNet to
224x224 pixel images in AlexNet and so on

These three different aspects on which scaling can be performed are identified as depth,
width, and resolution, respectively. Instead of manually scaling these attributes, which
often leads to suboptimal results, EfficientNets use neural architecture search to
calculate the optimal scaling factors for each of them.

Scaling up depth is deemed important because the deeper the network, the more complex
the model, and hence it can learn highly complex features. However, there is a trade-off
because, with increasing depth, the vanishing gradient problem escalates along with the
general problem of overfitting.

Similarly, scaling up width should theoretically help, as with a greater number of
channels, the network should learn more fine-grained features. However, for extremely
wide models, the accuracy tends to saturate quickly.

Finally, higher resolution images, in theory, should work better as they have more fine-
grained information. Empirically, however, the increase in resolution does not yield a
linearly equivalent increase in the model performance. All of this is to say that there are
trade-offs to be made while deciding the scaling factors and hence, neural architecture
search helps in finding the optimal scaling factors.

EfficientNet proposes finding the architecture that has the right balance between depth,
width, and resolution, and all three of these aspects are scaled together using a global
scaling factor. The EfficientNet architecture is built in two steps. First, a basic
architecture (called the base network) is devised by fixing the scaling factor to 1 . At this
stage, the relative importance of depth, width, and resolution is decided for the given task
and dataset. The base network obtained is pretty similar to a well-known CNN
architecture – MnasNet, short for Mobile Neural Architecture Search Network.
PyTorch offers the pre-trained MnasNet  model, which can be loaded as shown here:

import torchvision.models as models 

model = models.mnasnet1_0()

Once the base network is obtained in the first step, the optimal global scaling factor is
then computed with the aim of maximizing the accuracy of the model and minimizing the
number of computations (or flops). The base network is called EfficientNet B0 and the
subsequent networks derived for different optimal scaling factors are called EfficientNet

B1-B7. PyTorch provides pre-trained models for all of these variants:

import torchvision.models as models 

efficientnet_b0 = models.efficientnet_b0(pretrained=True) 

efficientnet_b1 = models.efficientnet_b1(pretrained=True) 

... 

efficientnet_b7 = models.efficientnet_b7(pretrained=True)     

As we go forward, efficient scaling of CNN architecture is going to be a prominent
direction of research along with the development of more sophisticated modules inspired
by the inception, residual, and dense modules. Another aspect of CNN architecture
development is minimizing the model size while retaining performance. MobileNets [3.9]
are a prime example and there is a lot of ongoing research on this front.



Besides the top-down approach of looking at architectural modifications of a pre-existing
model, there will be continued efforts adopting the bottom-up view of fundamentally
rethinking the units of CNNs such as the convolutional kernels, pooling mechanism, more
effective ways of flattening, and so on. One concrete example of this could be CapsuleNet

[3.10] , which revamped the convolutional units to cater to the third dimension (depth) in
images.

CNNs are a huge topic of study in themselves. In this chapter, we have touched upon the
architectural development of CNNs, mostly in the context of image classification.
However, these same architectures are used across a wide variety of applications. One
well-known example is the use of ResNets for object detection and segmentation in the
form of RCNNs [3.11] . Some of the improved variants of RCNNs are Faster R-CNN,
Mask-RCNN, and Keypoint-RCNN. PyTorch provides pre-trained models for all three
variants:

faster_rcnn = models.detection.fasterrcnn_resnet50_fpn() 

mask_rcnn = models.detection.maskrcnn_resnet50_fpn() 

keypoint_rcnn = models.detection.keypointrcnn_resnet50_fpn()

PyTorch also provides pre-trained models for ResNets that are applied to video-related
tasks such as video classification. Two such ResNet-based models used for video
classification are ResNet3D and ResNet Mixed Convolution:

resnet_3d = models.video.r3d_18() 

resnet_mixed_conv = models.video.mc3_18()

While we do not extensively cover these different applications and corresponding CNN
models in this chapter, we encourage you to read more on them. PyTorch's website can be
a good starting point [3.12] .

Summary

This chapter has been all about CNN architectures. In the next chapter, we will explore a
similar journey but for another important type of neural network – recurrent neural
networks. We will discuss the various recurrent net architectures and use PyTorch to
effectively implement, train, and test them.



5 Hybrid Advanced Models
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In the previous two chapters, we learned extensively about the various convolutional and
recurrent network architectures available, along with their implementations in PyTorch.
In this chapter, we will take a look at some other deep learning model architectures that
have proven to be successful on various machine learning tasks and are neither purely
convolutional nor recurrent in nature. We will continue from where we left off in both
Chapter 3, Deep CNN Architectures, and Chapter 4, Deep Recurrent Model Architectures.

First, we will explore transformers, which, as we learnt toward the end of Chapter 4, Deep

Recurrent Model Architectures, have outperformed recurrent architectures on various
sequential tasks. Then, we will pick up from the EfficientNets discussion at the end of
Chapter 3, Deep CNN Architectures, and explore the idea of generating randomly wired
neural networks, also known as RandWireNNs.

With this chapter, we aim to conclude our discussion of different kinds of neural network
architectures in this book. After completing this chapter, you will have a detailed
understanding of transformers and how to apply these powerful models to sequential
tasks using PyTorch. Furthermore, by building your own RandWireNN model, you will
have hands-on experience of performing a neural architecture search in PyTorch. This
chapter is broken down into the following topics:

Building a transformer model for language modeling
Developing a RandWireNN model from scratch

Building a transformer model for language modeling

In this section, we will explore what transformers are and build one using PyTorch for the
task of language modeling. We will also learn how to use some of its successors, such as
BERT and GPT, via PyTorch's pretrained model repository. Before we start building a
transformer model, let's quickly recap what language modeling is.

Reviewing language modeling

Language modeling is the task of figuring out the probability of the occurrence of a
word or a sequence of words that should follow a given sequence of words. For example,
if we are given French is a beautiful _____ as our sequence of words, what is the
probability that the next word will be language or word, and so on? These probabilities
are computed by modeling the language using various probabilistic and statistical
techniques. The idea is to observe a text corpus and learn the grammar by learning which

https://packt.link/EarlyAccessCommunity


words occur together and which words never occur together. This way, a language model
establishes probabilistic rules around the occurrence of different words or sequences,
given various different sequences.

Recurrent models have been a popular way of learning a language model. However, as
with many sequence-related tasks, transformers have outperformed recurrent networks
on this task as well. We will implement a transformer-based language model for the
English language by training it on the Wikipedia text corpus.

Now, let's start training a transformer for language modeling. During this exercise, we
will demonstrate only the most important parts of the code. The full code can be accessed
at our github repository [5.1].

We will delve deeper into the various components of the transformer architecture in-
between the exercise.

For this exercise, we will need to import a few dependencies. One of the important import
statements is listed here:

from torch.nn import TransformerEncoder, TransformerEncoderLayer

Besides importing the regular torch  dependencies, we must import some modules specific
to the transformer model; these are provided directly under the torch library. We'll also
import torchtext  in order to download a text dataset directly from the available datasets
under torchtext.datasets .

In the next section, we will define the transformer model architecture and look at the
details of the model's components.

Understanding the transformer model architecture

This is perhaps the most important step of this exercise. Here, we define the architecture
of the transformer model.

First, let's briefly discuss the model architecture and then look at the PyTorch code for
defining the model. The following diagram shows the model architecture:



Figure 5.1 – Transformer model architecture

The first thing to notice is that this is essentially an encoder-decoder based architecture,
with the Encoder Unit on the left (in purple) and the Decoder Unit (in orange) on the
right. The encoder and decoder units can be tiled multiple times for even deeper
architectures. In our example, we have two cascaded encoder units and a single decoder
unit. This encoder-decoder setup essentially means that the encoder takes a sequence as
input and generates as many embeddings as there are words in the input sequence (that
is, one embedding per word). These embeddings are then fed to the decoder, along with
the predictions made thus far by the model.

Let's walk through the various layers in this model:

Embedding Layer: This layer is simply meant to perform the traditional task of
converting each input word of the sequence into a vector of numbers; that is, an
embedding. As always, here, we use the torch.nn.Embedding  module to code this layer.



Positional Encoder: Note that transformers do not have any recurrent layers in their
architecture, yet they outperform recurrent networks on sequential tasks. How? Using a
neat trick known as positional encoding, the model is provided the sense of sequentiality
or sequential-order in the data. Basically, vectors that follow a particular sequential
pattern are added to the input word embeddings.

These vectors are generated in a way that enables the model to understand that the
second word comes after the first word and so on. The vectors are generated using the
sinusoidal  and cosinusoidal  functions to represent a systematic periodicity and distance
between subsequent words, respectively. The implementation of this layer for our exercise
is as follows:

class PosEnc(nn.Module): 

    def __init__(self, d_m, dropout=0.2, size_limit=5000): 

        # d_m is same as the dimension of the embeddings 

        pos = torch.arange(     size_limit, dtype=torch.float).unsqueeze(1) 

        divider = torch.exp(torch.arange(0, d_m, 2).float() * (-math.log(10000.0) / d_m)) 

        # divider is the list of radians, multiplied by position indices of words, and fed to th

        p_enc[:, 0, 0::2] = torch.sin(pos * divider) 

        p_enc[:, 0, 1::2] = torch.cos(pos * divider) 

    def forward(self, x): 

        return self.dropout(x + self.p_enc[:x.size(0)     ])

As you can see, the sinusoidal  and cosinusoidal  functions are used alternatively to give the
sequential pattern. There are many ways to implement positional encoding though.
Without a positional encoding layer, the model will be clueless about the order of the
words.

Multi-Head Attention: Before we look at the multi-head attention layer, let's first
understand what a self-attention layer is. We covered the concept of attention in
Chapter 4, Deep Recurrent Model Architectures, with respect to recurrent networks.
Here, as the name suggests, the attention mechanism is applied to self; that is, each word
of the sequence. Each word embedding of the sequence goes through the self-attention
layer and produces an individual output that is exactly the same length as the word
embedding. The following diagram describes the process of this in detail:



Figure 5.2 – Self-attention layer

As we can see, for each word, three vectors are generated through three learnable
parameter matrices (Pq, Pk, and Pv). The three vectors are query, key, and value vectors.
The query and key vectors are dot-multiplied to produce a number for each word. These
numbers are normalized by dividing the square root of the key vector length for each
word. The resultant numbers for all words are then Softmaxed at the same time to
produce probabilities that are finally multiplied by the respective value vectors for each
word. This results in one output vector for each word of the sequence, with the lengths of
the output vector and the input word embedding being the same.

A multi-head attention layer is an extension of the self-attention layer where multiple self-
attention modules compute outputs for each word. These individual outputs are
concatenated and matrix-multiplied with yet another parameter matrix (Pm) to generate
the final output vector, whose length is equal to the input embedding vector's. The
following diagram shows the multi-head attention layer, along with two self-attention
units that we will be using in this exercise:



Figure 5.3 – Multi-head attention layer with two self-attention units

Having multiple self-attention heads helps different heads focus on different aspects of
the sequence word, similar to how different feature maps learn different patterns in a
convolutional neural network. Due to this, the multi-head attention layer performs better
than an individual self-attention layer and will be used in our exercise.

Also, note that the masked multi-head attention layer in the decoder unit works in exactly
the same way as a multi-head attention layer, except for the added masking; that is, given
time step t of processing the sequence, all words from t+1 to n (length of the sequence)
are masked/hidden.

During training, the decoder is provided with two types of inputs. On one hand, it receives
query and key vectors from the final encoder as inputs to its (unmasked) multi-head
attention layer, where these query and key vectors are matrix transformations of the final
encoder output. On the other hand, the decoder receives its own predictions from
previous time steps as sequential input to its masked multi-head attention layer.



Addition and Layer Normalization: We discussed the concept of a residual connection
in Chapter 3, Deep CNN Architectures, while discussing ResNets. In Figure 5.1, we can
see that there are residual connections across the addition and layer normalization layers.
In each instance, a residual connection is established by directly adding the input word
embedding vector to the output vector of the multi-head attention layer. This helps with
easier gradient flow throughout the network and avoiding problems with exploding and
vanishing gradients. Also, it helps with efficiently learning identity functions across layers.

Furthermore, layer normalization is used as a normalization trick. Here, we normalize
each feature independently so that all the features have a uniform mean and standard
deviation. Please note that these additions and normalizations are applied individually
to each word vector of the sequence at each stage of the network.

Feedforward Layer: Within both the encoder and decoder units, the normalized residual
output vectors for all the words of the sequence are passed through a common
feedforward layer. Due to there being a common set of parameters across words, this
layer helps with learning broader patterns across the sequence.

Linear and Softmax Layer: So far, each layer is outputting a sequence of vectors, one
per word. For our task of language modeling, we need a single final output. The linear
layer transforms the sequence of vectors into a single vector whose size is equal to the
length of our word vocabulary. The Softmax layer converts this output into a vector of
probabilities summing to 1 . These probabilities are the probabilities that the respective
words (in the vocabulary) occur as the next words in the sequence.

Now that we have elaborated on the various elements of a transformer model, let's look at
the PyTorch code for instantiating the model.

Defining a transformer model in PyTorch

Using the architecture details described in the previous section, we will now write the
necessary PyTorch code for defining a transformer model, as follows:

class Transformer(nn.Module):

    def __init__(self, num_token, num_inputs, num_heads, num_hidden, num_layers, dropout=0.3): 

        self.position_enc = PosEnc(num_inputs, dropout) 

        layers_enc = TransformerEncoderLayer(num_inputs, num_heads, num_hidden, dropout) 

        self.enc_transformer = TransformerEncoder(layers_enc, num_layers) 

        self.enc = nn.Embedding(num_token, num_inputs) 

        self.num_inputs = num_inputs 

        self.dec = nn.Linear(num_inputs, num_token)

As we can see, in the __init__  method of the class, thanks to PyTorch's TransformerEncoder
and TransformerEncoderLayer  functions, we do not need to implement these ourselves. For
our language modeling task, we just need a single output for the input sequence of words.
Due to this, the decoder is just a linear layer that transforms the sequence of vectors from
an encoder into a single output vector. A position encoder is also initialized using the
definition that we discussed earlier.

In the forward  method, the input is positionally encoded and then passed through the
encoder, followed by the decoder:

    def forward(self, source): 

        source = self.enc(source) * math.sqrt(self.num_inputs) 

        source = self.position_enc(source) 

        op = self.enc_transformer(source, self.mask_source) 



        op = self.dec(op) 

        return op

Now that we have defined the transformer model architecture, we shall load the text
corpus to train it on.

Loading and processing the dataset

In this section, we will discuss the steps related to loading a text dataset for our task and
making it usable for the model training routine. Let's get started:

For this exercise, we will be using texts from Wikipedia, all of which are available as the
WikiText-2  dataset.

Dataset Citation

https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-
dataset/.

We'll use the functionality of torchtext  to download the training dataset (available under
torchtext  datasets) and tokenize its vocabulary:

tr_iter = WikiText2(split='train') 

tkzer = get_tokenizer('basic_english') 

vocabulary = build_vocab_from_iterator(map(tkzer, tr_iter), specials=['<unk>']) 

vocabulary.set_default_index(vocabulary['<unk>'])

1. We will then use the vocabulary to convert raw text into tensors for the training,
validation and testing datasets:

def process_data(raw_text): 

    numericalised_text = [torch.tensor(vocabulary(tkzer(text)), dtype=torch.long) for text in raw

    return torch.cat(tuple(filter(lambda t: t.numel() > 0, numericalised_text))) 

tr_iter, val_iter, te_iter = WikiText2() 

training_text = process_data(tr_iter) 

validation_text = process_data(val_iter) 

testing_text = process_data(te_iter)      

1. We'll also define the batch sizes for training and evaluation and declare a batch
generation function, as shown here:

def gen_batches(text_dataset, batch_size): 

    num_batches = text_dataset.size(0) // batch_size 

    text_dataset = text_dataset[:num_batches * batch_size] 

    text_dataset = text_dataset.view(batch_size, num_batches).t().contiguous() 

    return text_dataset.to(device) 

training_batch_size = 32 

evaluation_batch_size = 16 

training_data = gen_batches(training_text, training_batch_size) 

                                        

1. Next, we must define the maximum sequence length and write a function that will
generate input sequences and output targets for each batch, accordingly:

max_seq_len = 64 

def return_batch(src, k): 

    sequence_length = min(max_seq_len, len(src) - 1 - k) 

    sequence_data = src[k:k+sequence_length] 

    sequence_label = src[k+1:k+1+sequence_length].reshape(-1) 

    return sequence_data, sequence_label 

                                   

https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/


Having defined the model and prepared the training data, we will now train the
transformer model.

Training the transformer model

In this section, we will define the necessary hyperparameters for model training, define
the model training and evaluation routines, and finally execute the training loop. Let's get
started:

In this step, we define all the model hyperparameters and instantiate our transformer
model. The following code is self-explanatory:

num_tokens = len(vocabulary) # vocabulary size 

embedding_size = 256 # dimension of embedding layer 

num_hidden_params = 256 # transformer encoder's hidden (feed forward) layer dimension 

num_layers = 2 # num of transformer encoder layers within transformer encoder 

num_heads = 2 # num of heads in (multi head) attention models 

dropout = 0.25 # value (fraction) of dropout 

loss_func = nn.CrossEntropyLoss() 

lrate = 4.0 # learning rate 

optim_module = torch.optim.SGD(transformer_model.parameters(), lr=lrate) 

sched_module = torch.optim.lr_scheduler.StepLR(optim_module, 1.0, gamma=0.88) 

transformer_model = Transformer(num_tokens, embedding_size, num_heads, num_hidden_params, num_la

                                                  

Before starting the model training and evaluation loop, we need to define the training and
evaluation routines:

def train_model():     ) 

    for b, i in enumerate(range(0, training_data.size(0) - 1, max_seq_len)): 

        train_data_batch, train_label_batch = return_batch(training_data, i) 

        sequence_length = train_data_batch.size(0) 

        if sequence_length != max_seq_len:  # only on last batch 

            mask_source = mask_source[:sequence_length, :sequence_length] 

      

        op = transformer_model(train_data_batch, mask_source) 

        loss_curr = loss_func(op.view(-1, num_tokens), train_label_batch) 

       optim_module.zero_grad() 

        loss_curr.backward() 

torch.nn.utils.clip_grad_norm_(transformer_model.parameters(), 0.6) 

        optim_module.step() 

        loss_total += loss_curr.item() 

def eval_model(eval_model_obj, eval_data_source): 

...

Finally, we must run the model training loop. For demonstration purposes, we are training
the model for 5  epochs, but you are encouraged to run it for longer in order to get better
performance:

min_validation_loss = float("inf") 

eps = 5 

best_model_so_far = None 

for ep in range(1, eps + 1): 

    ep_time_start = time.time() 

    train_model() 

    validation_loss = eval_model(transformer_model, validation_data) 

    if validation_loss < min_validation_loss: 

        min_validation_loss = validation_loss 

        best_model_so_far = transformer_model

This should result in the following output:



Figure 5.4 – Transformer training logs

Besides the cross-entropy loss, the perplexity is also reported. Perplexity is a popularly
used metric in natural language processing to indicate how well a probability

distribution (a language model, in our case) fits or predicts a sample. The lower the
perplexity, the better the model is at predicting the sample. Mathematically, perplexity is
just the exponential of the cross-entropy loss. Intuitively, this metric is used to indicate
how perplexed or confused the model is while making predictions.

Once the model has been trained, we can conclude this exercise by evaluating the model's
performance on the test set:

testing_loss = eval_model(best_model_so_far, testing_data) 

print(f"testing loss {testing_loss:.2f}, testing perplexity {math.exp(testing_loss):.2f}")

This should result in the following output:

Figure 5.5 – Transformer evaluation results

In this exercise, we built a transformer model using PyTorch for the task of language
modeling. We explored the transformer architecture in detail and how it is implemented



in PyTorch. We used the WikiText-2  dataset and torchtext  functionalities to load and
process the dataset. We then trained the transformer model for 5  epochs and evaluated it
on a separate test set. This shall provide us with all the information we need to get started
on working with transformers.

Besides the original transformer model, which was devised in 2017, a number of
successors have since been developed over the years, especially around the field of
language modeling, such as the following:

Bidirectional Encoder Representations from Transformers (BERT), 2018

Generative Pretrained Transformer (GPT), 2018

GPT-2, 2019

Conditional Transformer Language Model (CTRL), 2019

Transformer-XL, 2019

Distilled BERT (DistilBERT), 2019

Robustly optimized BERT pretraining Approach (RoBERTa), 2019

GPT-3, 2020

While we will not cover these models in detail in this chapter, you can nonetheless get
started with using these models with PyTorch thanks to the transformers  library,
developed by HuggingFace 5.2 .We will explore HuggingFace in detail in Chapter 19. The
transformers library provides pre-trained transformer family models for various tasks,
such as language modeling, text classification, translation, question-answering, and so on.

Besides the models themselves, it also provides tokenizers for the respective models. For
example, if we wanted to use a pre-trained BERT model for language modeling, we would
need to write the following code once we have installed the transformers  library:

import torch 

from transformers import BertForMaskedLM, BertTokenizer 

bert_model = BertForMaskedLM.from_pretrained('bert-base-uncased') 

token_gen = BertTokenizer.from_pretrained('bert-base-uncased') 

ip_sequence = token_gen("I love PyTorch !", return_tensors="pt")["input_ids"] 

op = bert_model(ip_sequence, labels=ip_sequence) 

total_loss, raw_preds = op[:2]

As we can see, it takes just a couple of lines to get started with a BERT-based language
model. This demonstrates the power of the PyTorch ecosystem. You are encouraged to
explore this with more complex variants, such as Distilled BERT or RoBERTa, using the
transformers  library. For more details, please refer to their GitHub page, which was
mentioned previously.

This concludes our exploration of transformers. We did this by both building one from
scratch as well as by reusing pre-trained models. The invention of transformers in the
natural language processing space has been paralleled with the ImageNet moment in the
field of computer vision, so this is going to be an active area of research. PyTorch will
have a crucial role to play in the research and deployment of these types of models.

In the next and final section of this chapter, we will resume the neural architecture search
discussions we provided at the end of Chapter 3, Deep CNN Architectures, where we



briefly discussed the idea of generating optimal network architectures. We will explore a
type of model where we do not decide what the model architecture will look like, and
instead run a network generator that will find an optimal architecture for the given task.
The resultant network is called a randomly wired neural network (RandWireNN) and
we will develop one from scratch using PyTorch.

Developing a RandWireNN model from scratch

We discussed EfficientNets in Chapter 3, Deep CNN Architectures, where we explored the
idea of finding the best model architecture instead of specifying it manually.
RandWireNNs, or randomly wired neural networks, as the name suggests, are built on a
similar concept. In this section, we will study and build our own RandWireNN model using
PyTorch.

Understanding RandWireNNs

First, a random graph generation algorithm is used to generate a random graph with a
predefined number of nodes. This graph is converted into a neural network by a few
definitions being imposed on it, such as the following:

Directed: The graph is restricted to be a directed graph, and the direction of edge is
considered to be the direction of data flow in the equivalent neural network.
Aggregation: Multiple incoming edges to a node (or neuron) are aggregated by
weighted sum, where the weights are learnable.
Transformation: Inside each node of this graph, a standard operation is applied:
ReLU followed by 3x3 separable convolution (that is, a regular 3x3 convolution
followed by a 1x1 pointwise convolution), followed by batch normalization. This
operation is also referred to as a ReLU-Conv-BN triplet.
Distribution: Lastly, multiple outgoing edges from each neuron carry a copy of the
aforementioned triplet operation.

One final piece in the puzzle is to add a single input node (source) and a single output
node (sink) to this graph in order to fully transform the random graph into a neural
network. Once the graph is realized as a neural network, it can be trained for various
machine learning tasks.

In the ReLU-Conv-BN triplet unit, the output number of channels/features are the same
as the input number of channels/features for repeatability reasons. However, depending
on the type of task at hand, you can stage several of these graphs with an increasing
number of channels downstream (and decreasing spatial size of the data/images). Finally,
these staged graphs can be connected to each other by connecting the sink of one to the
source of the other in a sequential manner.

Next, in the form of an exercise, we will build a RandWireNN model from scratch using
PyTorch.

Developing RandWireNNs using PyTorch

We will now develop a RandWireNN model for an image classification task. This will be
performed on the CIFAR-10 dataset. We will start from an empty model, generate a
random graph, transform it into a neural network, train it for the given task on the given
dataset, evaluate the trained model, and finally explore the resulting model that was
generated. In this exercise, we will only show the important parts of the code for



demonstration purposes. In order to access the full code, visit the book’s github repo [5.3]
.

Defining a training routine and loading data

In the first sub-section of this exercise, we will define the training function that will be
called by our model training loop and define our dataset loader, which will provide us with
batches of data for training. Let's get started:

First, we need to import some libraries. Some of the new libraries that will be used in this
exercise are as follows:

from torchviz import make_dot

import networkx as nx

Next, we must define the training routine, which takes in a trained model that can
produce prediction probabilities given an RGB input image:

def train(model, train_dataloader, optim, loss_func, epoch_num, lrate): 

    for training_data, training_label in train_dataloader: 

        pred_raw = model(training_data) 

        curr_loss = loss_func(pred_raw, training_label) 

        training_loss += curr_loss.data 

    return training_loss / data_size, training_accuracy / data_size

Next, we define the dataset loader. We will use the CIFAR-10  dataset for this image
classification task, which is a well-known database of 60,000 32x32 RGB images labeled
across 10 different classes containing 6,000 images per class. We will use the
torchvision.datasets  module to directly load the data from the torch dataset repository.

Dataset Citation

Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009.

The code is as follows:

def load_dataset(batch_size):

    train_dataloader = torch.utils.data.DataLoader( 

        datasets.CIFAR10('dataset', transform=transform_train_dataset, train=True, download=True

        batch_size=batch_size,  shuffle=True) 

    return train_dataloader, test_dataloader 

train_dataloader, test_dataloader = load_dataset(batch_size)

This should give us the following output:

Figure 5.6 – RandWireNN data loading

We will now move on to designing the neural network model. For this, we will need to
design the randomly wired graph.

Defining the randomly wired graph



In this section, we will define a graph generator in order to generate a random graph that
will be later used as a neural network. Let's get started:

As shown in the following code, we must define the random graph generator class:

class RndGraph(object): 

    def __init__(self, num_nodes, graph_probability, nearest_neighbour_k=4, num_edges_attach=5): 

    def make_graph_obj(self):

        graph_obj = nx.random_graphs.connected_watts_strogatz_graph(self.num_nodes, self.nearest_

        return graph_obj

In this exercise, we'll be using a well-known random graph model – the Watts Strogatz

(WS) model. This is one of the three models that was experimented on in the original
research paper about RandWireNNs. In this model, there are two parameters:

The number of neighbors for each node (which should be strictly even), K

A rewiring probability, P

First, all the N nodes of the graph are organized in a ring fashion and each node is
connected to K/2 nodes to its left and K/2 to its right. Then, we traverse each node
clockwise K/2 times. At the mth traversal (0<m<K/2), the edge between the current node
and its mth neighbor to the right is rewired with a probability, P.

Here, rewiring means that the edge is replaced by another edge between the current node
and another node different from itself, as well as the mth neighbor. In the preceding code,
the make_graph_obj  method of our random graph generator class instantiates the WS graph
model using the networkx  library.

In the preceding code, the make_graph_obj method of our random graph generator class
instantiates the WS graph model using the networkx library.

Furthermore, we add a get_graph_config  method to return the list of nodes and edges in
the graph. This will come in handy while we're transforming the abstract graph into a
neural network. We will also define some graph saving and loading methods for caching
the generated graph both for reproducibility and efficiency reasons:

    def get_graph_config(self, graph_obj): 

        return node_list, incoming_edges 

    def save_graph(self, graph_obj, path_to_write): 

        nx.write_yaml(graph_obj, "./cached_graph_obj/" + path_to_write) 

    def load_graph(self, path_to_read): 

        return nx.read_yaml("./cached_graph_obj/" + path_to_read)

Next, we will work on creating the actual neural network model.

Defining RandWireNN model modules

Now that we have the random graph generator, we need to transform it into a neural
network. But before that, we will design some neural modules to facilitate that
transformation. Let's get started:

Starting from the lowest level of the neural network, first, we will define a separable 2D
convolutional layer, as follows:

class SepConv2d(nn.Module): 

    def __init__(self, input_ch, output_ch, kernel_length=3, dilation_size=1, padding_size=1, st

        super(SepConv2d, self).__init__() 



        self.conv_layer = nn.Conv2d(input_ch, input_ch, kernel_length, stride_length, padding_si

        self.pointwise_layer = nn.Conv2d(input_ch, output_ch, kernel_size=1, stride=1, padding=0

    def forward(self, x): 

        return self.pointwise_layer(self.conv_layer(x))

The separable convolutional layer is a cascade of a regular 3x3 2D convolutional layer
followed by a pointwise 1x1 2D convolutional layer.

Having defined the separable 2D convolutional layer, we can now define the ReLU-Conv-
BN triplet unit:

class UnitLayer(nn.Module): 

    def __init__(self, input_ch, output_ch, stride_length=1): 

        self.unit_layer = nn.Sequential( 

            nn.ReLU(), 

            SepConv2d(input_ch, output_ch, stride_length=stride_length),nn.BatchNorm2d(output_ch

        ) 

    def forward(self, x): 

        return self.unit_layer(x)

As we mentioned earlier, the triplet unit is a cascade of a ReLU layer, followed by a
separable 2D convolutional layer, followed by a batch normalization layer. We must also
add a dropout layer for regularization.

With the triplet unit in place, we can now define a node in the graph with all of the
aggregation , transformation , and distribution  functionalities we need, as discussed at the
beginning of this exercise:

class GraphNode(nn.Module): 

    def __init__(self, input_degree, input_ch, output_ch, stride_length=1): 

        self.unit_layer = UnitLayer(input_ch, output_ch, stride_length=stride_length) 

    def forward(self, *ip): 

        if len(self.input_degree) > 1: 

            op = (ip[0] * torch.sigmoid(self.params[0])) 

            for idx in range(1, len(ip)): 

                op += (ip[idx] * torch.sigmoid(self.params[idx])) 

            return self.unit_layer(op) 

        else: 

            return self.unit_layer(ip[0])

In the forward  method, we can see that if the number of incoming edges to the node is
more than 1 , then a weighted average is calculated and these weights are learnable
parameters of this node. The triplet unit is applied to the weighted average and the
transformed (ReLU-Conv-BN-ed) output is returned.

We can now consolidate all of our graph and graph node definitions in order to define a
randomly wired graph class, as shown here:

class RandWireGraph(nn.Module): 

    def __init__(self, num_nodes, graph_prob, input_ch, output_ch, train_mode, graph_name): 

        # get graph nodes and in edges 

        rnd_graph_node = RndGraph(self.num_nodes, self.graph_prob) 

        if self.train_mode is True: 

            rnd_graph = rnd_graph_node.make_graph_obj() 

            self.node_list, self.incoming_edge_list = rnd_graph_node.get_graph_config(rnd_graph) 

        else: 

        # define source Node 

        self.list_of_modules = nn.ModuleList([GraphNode(self.incoming_edge_list[0], self.input_c

stride_length=2)]) 

        # define the sink Node 

self.list_of_modules.extend([GraphNode(self.incoming_edge_list[n], self.output_ch, self.output_c

                                     for n in self.node_list if n > 0])



In the __init__  method of this class, first, an abstract random graph is generated. Its list
of nodes and edges are derived. Using the GraphNode  class, each abstract node of this
abstract random graph is encapsulated as a neuron of the desired neural network. Finally,
a source or input node and a sink or an output node are added to the network to make the
neural network ready for the image classification task.

The forward  method is also unconventional, as shown here:

    def forward(self, x): 

        # source vertex 

        op = self.list_of_modules[0].forward(x) 

        mem_dict[0] = op 

        # the rest of the vertices 

        for n in range(1, len(self.node_list) - 1): 

            if len(self.incoming_edge_list[n]) > 1: 

                op = self.list_of_modules[n].forward(*[mem_dict[incoming_vtx] 

                                                       for incoming_vtx in self.incoming_edge_li

            mem_dict[n] = op 

        for incoming_vtx in range(1, len(self.incoming_edge_list[self.num_nodes + 1])): 

            op += mem_dict[self.incoming_edge_list[self.num_nodes + 1][incoming_vtx]] 

        return op / len(self.incoming_edge_list[self.num_nodes + 1])

First, a forward pass is run for the source neuron, and then a series of forward passes are
run for the subsequent neurons based on the list_of_nodes  for the graph. The individual
forward passes are executed using list_of_modules . Finally, the forward pass through the
sink neuron gives us the output of this graph.

Next, we will use these defined modules and the randomly wired graph class to build the
actual RandWireNN model class.

Transforming a random graph into a neural network

In the previous step, we defined one randomly wired graph. However, as we mentioned at
the beginning of this exercise, a randomly wired neural network consists of several staged
randomly wired graphs. The rationale behind that is to have a different (increasing)
number of channels/features as we progress from the input neuron to the output neuron
in an image classification task. This would be impossible with just one randomly wired
graph because the number of channels is constant through one such graph, by design.
Let's get started:

In this step, we define the ultimate randomly wired neural network. This will have three
randomly wired graphs cascaded next to each other. Each graph will have double the
number of channels compared to the previous graph to help us align with the general
practice of increasing the number of channels (while downsampling spatially) in an image
classification task:

class RandWireNNModel(nn.Module): 

    def __init__(self, num_nodes, graph_prob, input_ch, output_ch, train_mode): 

        self.conv_layer_1 = nn.Sequential( 

            nn.Conv2d(in_channels=3, out_channels=self.output_ch, kernel_size=3, padding=1), 

            nn.BatchNorm2d(self.output_ch) ) 

        self.conv_layer_2 = …

        self.conv_layer_3 = …

        self.conv_layer_4 = …

        self.classifier_layer = nn.Sequential( 

            nn.Conv2d(in_channels=self.input_ch*8, out_channels=1280, kernel_size=1), nn.BatchNo

        self.output_layer = nn.Sequential(nn.Dropout(self.dropout), nn.Linear(1280, self.class_n



The __init__  method starts with a regular 3x3 convolutional layer, followed by three
staged randomly wired graphs with channels that double in terms of numbers. This is
followed by a fully connected layer that flattens the convolutional output from the last
neuron of the last randomly wired graph into a vector that's 1280  in size.

Finally, another fully connected layer produces a 10-sized vector containing the
probabilities for the 10 classes, as follows:

    def forward(self, x): 

        x = self.conv_layer_1(x) 

        x = self.conv_layer_2(x) 

        x = self.conv_layer_3(x) 

        x = self.conv_layer_4(x) 

        x = self.classifier_layer(x) 

        # global average pooling 

        _, _, h, w = x.size()

        x = F.avg_pool2d(x, kernel_size=[h, w]) 

        x = torch.squeeze(x) 

        x = self.output_layer(x) 

        return x

The forward  method is quite self-explanatory, besides the global average pooling that is
applied right after the first fully connected layer. This helps reduce dimensionality and the
number of parameters in the network.

At this stage, we have successfully defined the RandWireNN model, loaded the datasets,
and defined the model training routine. Now, we are all set to run the model training loop.

Training the RandWireNN model

In this section, we will set the model's hyperparameters and train the RandWireNN
model. Let's get started:

We have defined all the building blocks for our exercise. Now, it is time to execute it.
First, let's declare the necessary hyperparameters:

num_epochs = 5 

graph_probability = 0.7 

node_channel_count = 64 

num_nodes = 16 

lrate = 0.1 

batch_size = 64 

train_mode = True

Having declared the hyperparameters, we instantiate the RandWireNN model, along with
the optimizer and loss function:

rand_wire_model = RandWireNNModel(num_nodes, graph_probability, node_channel_count, node_channel_

optim_module = optim.SGD(rand_wire_model.parameters(), lr=lrate, weight_decay=1e-4, momentum=0.8

loss_func = nn.CrossEntropyLoss().to(device)

Finally, we begin training the model. We're training the model for 5  epochs here for
demonstration purposes, but you are encouraged to train for longer to see the boost in
performance:

for ep in range(1, num_epochs + 1): 

    epochs.append(ep) 

    training_loss, training_accuracy = train(rand_wire_model, train_dataloader, optim_module, lo

    test_accuracy = accuracy(rand_wire_model, test_dataloader) 

    test_accuracies.append(test_accuracy) 

    training_losses.append(training_loss) 



    training_accuracies.append(training_accuracy) 

    if best_test_accuracy < test_accuracy: 

        torch.save(model_state, './model_checkpoint/' + model_filename + 'ckpt.t7') 

    print("model train time: ", time.time() - start_time)

This should result in the following output:

Figure 5.7 – RandWireNN training logs

It is evident from these logs that the model is progressively learning as the epochs
progress. The performance on the validation set seems to be consistently increasing,
which indicates model generalizability.

With that, we have created a model with no particular architecture in mind that can
reasonably perform the task of image classification on the CIFAR-10 dataset.

Evaluating and visualizing the RandWireNN model



Finally, we will look at this model's test set performance before briefly exploring the
model architecture visually. Let's get started:

Once the model has been trained, we can evaluate it on the test set:

rand_wire_nn_model.load_state_dict(model_checkpoint['model']) 

for test_data, test_label in test_dataloader: 

    success += pred.eq(test_label.data).sum() 

    print(f"test accuracy: {float(success) * 100. / len(test_dataloader.dataset)} %")

This should result in the following output:

Figure 5.8 – RandWireNN evaluation results

The best performing model was found at the fourth epoch, with over 67% accuracy.
Although the model is not perfect yet, we can train it for more epochs to achieve better
performance. Also, a random model for this task would perform at an accuracy of 10%
(because of 10 equally likely classes), so an accuracy of 67.73% is still promising,
especially given the fact that we are using a randomly generated neural network
architecture.

To conclude this exercise, let's look at the model architecture that was learned. The
original image is too large to be displayed here. You can find the full image at our github
repository both in .svg format [5.4] and in .pdf format [5.5] . In the following figure, we
have vertically stacked three parts - the input section, a mid section and the output
section, of the original neural network:

Figure 5.9 – RandWireNN architecture



From this graph, we can observe the following key points:

At the top, we can see the beginning of this neural network, which consists of a 64-
channel 3x3 2D convolutional layer, followed by a 64-channel 1x1 pointwise 2D
convolutional layer.

In the middle section, we can see the transition between the third- and fourth-stage
random graphs, where we can see the sink neuron, conv_layer_3 , of the stage 3 random
graph followed by the source neuron conv_layer_4 , of the stage 4 random graph.

Lastly, the lowermost section of the graph shows the final output layers – the sink neuron
(a 512-channel separable 2D convolutional layer) of the stage 4 random graph, followed
by a fully connected flattening layer, resulting in a 1,280-size feature vector, followed by a
fully connected softmax layer that produces the 10 class probabilities.

Hence, we have built, trained, tested, and visualized a neural network model for image
classification without specifying any particular model architecture. We did specify some
overarching constraints over the structure, such as the penultimate feature vector length
( 1280 ), the number of channels in the separable 2D convolutional layers ( 64 ), the number
of stages in the RandWireNN model ( 4 ), the definition of each neuron (ReLU-Conv-BN
triplet), and so on.

However, we didn't specify what the structure of this neural network architecture should
look like. We used a random graph generator to do this for us, which opens up an almost
infinite number of possibilities in terms of finding optimal neural network architectures.

Neural architecture search is an ongoing and promising area of research in the field of
deep learning. Largely, this fits in well with the field of training custom machine learning
models for specific tasks, referred to as AutoML.

AutoML stands for automated machine learning as it does away with the necessity of
having to manually load datasets, predefine a particular neural network model
architecture to solve a given task, and manually deploy models into production systems.
In Chapter 16, PyTorch and AutoML, we will discuss AutoML in detail and learn how to
build such systems with PyTorch.

Summary

In this chapter, we looked at two distinct hybrid types of neural networks. First, we looked
at the transformer model – the attention-only-based models with no recurrent connections
that have outperformed all recurrent models on multiple sequential tasks. We ran through
an exercise where we built, trained, and evaluated a transformer model on a language
modeling task with the WikiText-2 dataset using PyTorch. In the second and final section
of this chapter, we took up from where we left off in Chapter 3, Deep CNN Architectures,
where we discussed the idea of optimizing for model architectures rather than optimizing
for just the model parameters while fixing the architecture. We explored one of the
approaches to do that – using randomly wired neural networks (RandWireNNs) – where
we generated random graphs, assigned meanings to the nodes and edges of these graphs,
and interconnected these graphs to form a neural network.

In the next chapter, we will switch gears and move away from model architectures and
look at some interesting PyTorch applications. We will learn how to generate music and
text through generative deep learning models using PyTorch.



7 Music and Text Generation with PyTorch
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PyTorch is a fantastic tool for both researching deep learning models and developing deep
learning-based applications. In the previous chapters, we looked at model architectures
across various domains and model types. We used PyTorch to build these architectures
from scratch and used pre-trained models from the PyTorch model zoo. We will switch
gears from this chapter onward and dive deep into generative models.

In the previous chapters, most of our examples and exercises revolved around developing
models for classification, which is a supervised learning task. However, deep learning
models have also proven extremely effective when it comes to unsupervised learning
tasks. Deep generative models are one such example. These models are trained using lots
of unlabeled data. Once trained, the model can generate similar meaningful data. It does
so by learning the underlying structure and patterns in the input data.

In this chapter, we will develop text and music generators. For developing the text
generator, we will utilize the transformer-based language model we trained in Chapter 5,
Hybrid Advanced Models. We will extend the transformer model using PyTorch so that it
works as a text generator. Furthermore, we will demonstrate how to use advanced pre-
trained transformer models in PyTorch in order to set up a text generator in a few lines of
code. Finally, we will build a music generator model that's been trained on an MIDI
dataset from scratch using PyTorch.

By the end of this chapter, you should be able to create your own text and music
generation models in PyTorch. You will also be able to apply different sampling or
generation strategies to generate data from such models. This chapter covers the
following topics:

Building a transformer-based text generator with PyTorch
Using a pre-trained GPT 2 model as a text generator
Generating MIDI music with LSTMs using PyTorch

Building a transformer-based text generator with PyTorch

We built a transformer-based language model using PyTorch in the previous chapter.
Because a language model models the probability of a certain word following a given
sequence of words, we are more than half-way through in building our own text
generator. In this section, we will learn how to extend this language model as a deep
generative model that can generate arbitrary yet meaningful sentences, given an initial
textual cue in the form of a sequence of words.

https://packt.link/EarlyAccessCommunity


Training the transformer-based language model

In the previous chapter, we trained a language model for 5 epochs. In this section, we will
follow those exact same steps but will train the model for longer - 25 epochs. The goal
here is to obtain a better performing language model that can then generate realistic
sentences. Please note that model training can take several hours. Hence, it is
recommended to train it in the background; for example, overnight. In order to follow the
steps for training the language model, please follow the complete code at GitHub [7.1] .

Upon training for 25 epochs, we get the following output:

Figure 7 .1 – Language model training logs

Now that we have successfully trained the transformer model for 25 epochs, we can move
on to the actual exercise, where we will extend this trained language model as a text
generation model.



Saving and loading the language model

Here, we will simply save the best performing model checkpoint once the training is
complete. We can then separately load this pre-trained model:

1. Once the model has been trained, it is ideal to save it locally so that you avoid having
to retrain it from scratch. You can save it as follows:

mdl_pth = './transformer.pth'

torch.save(best_model_so_far.state_dict(), mdl_pth)

1. We can now load the saved model so that we can extend this language model as a text
generation model:

# load the best trained model

transformer_cached = Transformer(num_tokens, embedding_size, num_heads, num_hidden_params, num_l

transformer_cached.load_state_dict(torch.load(mdl_pth))

In this section, we re-instantiated a transformer model object and then loaded the pre-
trained model weights into this new model object. Next, we will use this model to
generate text.

Using the language model to generate text

Now that the model has been saved and loaded, we can extend the trained language
model to generate text:

1. First, we must define the target number of words we want to generate and provide an
initial sequence of words as a cue to the model:

ln = 5      

sntc = 'They are       _' 

sntc_split = sntc.split() 

mask_source = gen_sqr_nxt_mask(max_seq_len).to(device)

1. Finally, we can generate the words one by one in a loop. At each iteration, we can
append the predicted word in that iteration to the input sequence. This extended
sequence becomes the input to the model in the next iteration and so on. The random
seed is added to ensure consistency. By changing the seed, we can generate different
texts, as shown in the following code block:

torch.manual_seed(34     ) 

with torch.no_grad(): 

    for i in range(ln): 

        sntc = ' '.join(sntc_split) 

        txt_ds = Tensor(vocabulary(sntc_split)).unsqueeze(0).to(torch.long) 

        num_b = txt_ds.size(0) 

        txt_ds = txt_ds.narrow(0, 0, num_b) 

        txt_ds = txt_ds.view(1, -1).t().contiguous().to(device) 

        ev_X, _ = return_batch(txt_ds, i+1) 

        sequence_length = ev_X.size(0) 

        if sequence_length != max_seq_len: 

            mask_source = mask_source[:sequence_length, :sequence_length] 

        op = transformer_cached(ev_X, mask_source) 

        op_flat = op.view(-1, num_tokens) 

        res = vocabulary.get_itos()[op_flat.argmax(1)[0]] 

        sntc_split.insert(-1, res) 

                                              

print(sntc[:-2])

This should output the following:



Figure 7 .2 – Transformer generated text

As we can see, using PyTorch, we can train a language model (a transformer-based model,
in this case) and then use it to generate text with a few additional lines of code. The
generated text seems to make sense. The result of such text generators is limited by the
amount of data the underlying language model is trained on, as well as how powerful the
language model is. In this section, we have essentially built a text generator from scratch.

In the next section, we will load the pre-trained language model and use it as a text
generator. We will be using an advanced successor of the transformer model – the
generative pre-trained transformer (GPT-2). We will demonstrate how to build an out-
of-the-box advanced text generator using PyTorch in less than 10 lines of code. We will
also look at some strategies involved in generating text from a language model.

Using a pre-trained GPT-2 model as a text generator

Using the transformers  library together with PyTorch, we can load most of the latest
advanced transformer models for performing various tasks such as language modeling,
text classification, machine translation, and so on. We demonstrated how to do so in
Chapter 5, Hybrid Advanced Models.

In this section, we will load the pre-trained GPT-2-based language model. We will then
extend this model so that we can use it as a text generator. Then, we will explore the
various strategies we can follow to generate text from a pre-trained language model and
use PyTorch to demonstrate those strategies.

Out-of-the-box text generation with GPT-2

In the form of an exercise, we will load a pre-trained GPT-2 language model using the
transformers library and extend this language model as a text generation model to
generate arbitrary yet meaningful texts. We will only show the important parts of the code
for demonstration purposes. In order to access the full code, go to github [7.2] . Follow
these steps:

1. First, we need to import the necessary libraries:

from transformers import GPT2LMHeadModel, GPT2Tokenizer 

import torch

We will import the GPT-2 multi-head language model and corresponding tokenizer to
generate the vocabulary.

1. Next, we will instantiate GPT2Tokenizer  and the language model. And then, we will
provide an initial set of words as a cue to the model, as follows:

torch.manual_seed(799) 

tkz = GPT2Tokenizer.from_pretrained("gpt2") 

mdl = GPT2LMHeadModel.from_pretrained('gpt2') 

ln = 10 

cue = "They     " 



gen = tkz(cue, return_tensors="pt")      

to_ret      = gen["input_ids"][0]     

1. Finally, we will iteratively predict the next word for a given input sequence of words
using the language model. At each iteration, the predicted word is appended to the
input sequence of words for the next iteration:

prv=None 

for i in range(ln): 

    outputs = mdl(**gen) 

    next_token_logits = torch.argmax(outputs.logits[-1, :]) 

    to_ret = torch.cat([to_ret, next_token_logits.unsqueeze(0)]) 

    gen = {"input_ids": to_ret} 

seq = tkz.decode(to_ret) 

print(seq) 

                                             

The output should be as follows:

Figure 7 .3 – GPT-2 generated text

This way of generating text is also called greedy search. In the next section, we will look
at greedy search in more detail and some other text generation strategies as well.

Text generation strategies using PyTorch

When we use a trained text generation model to generate text, we typically make
predictions word by word. We then consolidate the resulting sequence of predicted words
as predicted text. When we are in a loop iterating over word predictions, we need to
specify a method of finding/predicting the next word given the previous k predictions.
These methods are also known as text generation strategies, and we will discuss some
well-known strategies in this section.

Greedy search

The name greedy is justified by the fact that the model selects the word with the
maximum probability at the current iteration, regardless of how many time steps further
ahead they are. With this strategy, the model could potentially miss a highly probable
word hiding (further ahead in time) behind a low probability word, merely because the
model did not pursue the low probability word. The following diagram demonstrates the
greedy search strategy by illustrating a hypothetical scenario of what might be happening
under the hood in step 3 of the previous exercise. At each time step, the text generation
model outputs possible words, along with their probabilities:



Figure 7 .4 – Greedy search

As we can see, at each step, the word with the highest probability is picked up by the
model under the greedy search strategy of text generation. Note the penultimate step,
where the model predicts the words system, people, and future with roughly equal
probabilities. With greedy search, system is selected as the next word due to it having a
slightly higher probability than the rest. However, you could argue that people or future

could have led to a better or more meaningful generated text.

This is the core limitation of the greedy search approach. Besides, greedy search also
results in repetitive results due to a lack of randomness. If someone wants to use such a
text generator artistically, greedy search is not the best approach, merely due to its
monotonicity.

In the previous section, we manually wrote the text generation loop. Thanks to the
transformers  library, we can write the text generation step in three lines of code:

ip_ids = tkz.encode(cue, return_tensors='pt') 

op_greedy = mdl.generate(ip_ids, max_length=ln, pad_token_id=tkz.eos_token_id) 

seq = tkz.decode(op_greedy[0], skip_special_tokens=True) 

print(seq) 

                         

This should output the following:

Figure 7 .5 – GPT-2 generated text (concise)

Notice that the generated sentence shown in Figure 7 .5 has one less token (full-stop)
than the sentence that was generated in Figure 7 .3. This difference is because in the



latter code, the max_length  argument includes the cue words. So, if we have one cue word,
only nine new words would be predicted, as is the case here .

Beam search

Greedy search is not the only way of generating texts. Beam search is a development of
the greedy search method wherein we maintain a list of potential candidate sequences
based on the overall predicted sequence probability, rather than just the next word
probability. The number of candidate sequences to be pursued is the number of beams
along the tree of word predictions.

The following diagram demonstrates how beam search with a beam size of three would be
used to produce three candidate sequences (ordered as per the overall sequence
probability) of five words each:

Figure 7 .6 – Beam search



At each iteration in this beam search example, the three most likely candidate sequences
are maintained. As we proceed further in the sequence, the possible number of candidate
sequences increases exponentially. However, we are only interested in the top three
sequences. This way, we do not miss potentially better sequences as we might with
greedy search.

In PyTorch, we can use beam search out of the box in one line of code. The following code
demonstrates beam search-based text generation with three beams generating the three
most likely sentences, each containing five words:

op_beam = mdl.generate( 

    ip_ids, 

    max_length=5, 

    num_beams=3, 

    num_return_sequences=3, 

    pad_token_id=tkz.eos_token_id 

) 

for op_beam_cur in op_beam: 

    print(tkz.decode(op_beam_cur, skip_special_tokens=True))

This gives us the following output:

Figure 7 .7 – Beam search results

The problem of repetitiveness or monotonicity still remains with the beam search.
Different runs would result in the same set of results as it deterministically looks for the
sequence with the maximum overall probabilities. In the next section, we will look at some
of the ways we can make the generated text more unpredictable or creative.

Top-k and top-p sampling

Instead of always picking the next word with the highest probability, we can randomly
sample the next word out of the possible set of next words based on their relative
probabilities. For example, in Figure 7 .6, the words be, know, and show have
probabilities of 0.7, 0.2, and 0.1, respectively. Instead of always picking be against know

and show, we can randomly sample any one of these three words based on their
probabilities. If we repeat this exercise 10 times to generate 10 separate texts, be will be
chosen roughly seven times and know and show will be chosen two and one times,
respectively. This gives us far too many different possible combinations of words that
beam or greedy search would never generate.

Two of the most popular ways of generating texts using sampling techniques are known as
top-k and top-p sampling. Under top-k sampling, we predefine a parameter, k, which is



the number of candidate words that should be considered while sampling the next word.
All the other words are discarded, and the probabilities are normalized among the top k
words. In our previous example, if k is 2, then the word show will be discarded and the
words be and know will have their probabilities (0.7 and 0.2, respectively) normalized to
0.78 and 0.22, respectively.

The following code demonstrates the top-k text generation method:

for i in range(3): 

    torch.manual_seed(i+10) 

    op = mdl.generate( 

        ip_ids, 

        do_sample=True, 

        max_length=5, 

        top_k=2, 

        pad_token_id=tkz.eos_token_id 

    ) 

    seq = tkz.decode(op[0], skip_special_tokens=True) 

    print(seq)

This should generate the following output:

Figure 7 .8 – Top-k search results

To sample from all possible words, instead of just the top-k words, we shall set the top-k
argument to 0  in our code. As shown in the preceding screenshot, different runs produce
different results as opposed to greedy search, which would result in the exact same result
on each run, as shown in the following code :

for i in range(3): 

    torch.manual_seed(i+10) 

    op_greedy = mdl.generate(ip_ids, max_length=5, pad_token_id=tkz.eos_token_id) 

    seq = tkz.decode(op_greedy[0], skip_special_tokens=True) 

    print(seq)     

This should output the following:



Figure 7 .9 – Repetitive greedy search results

Under the top-p sampling strategy, instead of defining the top k words to look at, we can
define a cumulative probability threshold (p) and then retain words whose probabilities
add up to p. In our example, if p is between 0.7 and 0.9, then we discard know and show,
if p is between 0.9 and 1.0, then we discard show, and if p is 1.0, then we keep all three
words; that is, be, know, and show.

The top-k strategy can sometimes be unfair in scenarios where the probability distribution
is flat. This is because it clips off words that are almost as probable as the ones that have
been retained. In those cases, the top-p strategy would retain a larger pool of words to
sample from and would retain a smaller pool of words in cases where the probability
distribution is rather sharp.

The following code demonstrates the top-p sampling method:

for i in range(3): 

    torch.manual_seed(i+10) 

    op = mdl.generate( 

        ip_ids, 

        do_sample=True, 

        max_length=5, 

        top_p=0.75, 

        top_k=0, 

        pad_token_id=tkz.eos_token_id 

    ) 

    seq = tkz.decode(op[0], skip_special_tokens=True) 

    print(seq)

This should output the following:

Figure 7 .10 – Top-p search results

We can set both top-k and top-p strategies together. In this example, we have set top-k  to
0  to essentially disable the top-k strategy, and p  is set to 0.75 . Once again, this results in



different sentences across runs and can lead us to more creatively generated texts as
opposed to greedy or beam search. There are many more text generation strategies
available, and a lot of research is happening in this area. We encourage you to follow up
on this further.

A great starting point is playing around with the available text generation strategies in the
transformers  library. You can read more about it from their blog post [7.3] .

This concludes our exploration of using PyTorch to generate text. In the next section, we
will perform a similar exercise but this time for music instead of text. The idea is to train
an unsupervised model on a music dataset and use the trained model to generate
melodies similar to those in the training dataset.

Generating MIDI music with LSTMs using PyTorch

Moving on from text, in this section, we will use PyTorch to create a machine learning
model that can compose classical-like music. We used transformers for generating text in
the previous section. Here, we will use an LSTM model to process sequential music data.
We will train the model on Mozart's classical music compositions.

Each musical piece will essentially be broken down into a sequence of piano notes. We
will be reading music data in the form of Musical Instruments Digital Interface

(MIDI) files, which is a well-known and commonly used format for conveniently reading
and writing musical data across devices and environments.

After converting the MIDI files into sequences of piano notes (which we call the piano
roll), we will use them to train a next-piano-note detection system. In this system, we will
build an LSTM-based classifier that will predict the next piano note for the given
preceding sequence of piano notes, of which there are 88 in total (as per the standard 88
piano keys).

We will now demonstrate the entire process of building the AI music composer in the form
of an exercise. Our focus will be on the PyTorch code that's used for data loading, model
training, and generating music samples. Please note that the model training process may
take several hours and therefore it is recommended to run the training process in the
background; for example, overnight. The code presented here has been curtailed in the
interest of keeping the text short.

Details of handling the MIDI music files are beyond the scope of this book, although you
are encouraged to explore the full code, which is available at github [7.4] .

Loading the MIDI music data

First, we will demonstrate how to load the music data that is available in MIDI format. We
will briefly mention the code for handling MIDI data, and then illustrate how to make
PyTorch dataloaders out of it. Let's get started:

1. As always, we will begin by importing the important libraries. Some of the new ones
we'll be using in this exercise are as follows:

import skimage.io as io 

from struct import pack, unpack 

from io import StringIO, BytesIO



skimage  is used to visualize the sequences of the music samples that are generated by the
model. struct  and io  are used for handling the process of converting MIDI music data
into piano rolls.

1. Next, we will write the helper classes and functions for loading MIDI files and
converting them into sequences of piano notes (matrices) that can be fed to the LSTM
model. First, we define some MIDI constants in order to configure various music
controls such as pitch, channels, start of sequence, end of sequence, and so on:

NOTE_MIDI_OFF = 0x80 

NOTE_MIDI_ON = 0x90 

CHNL_PRESS = 0xD0 

MIDI_PITCH_BND = 0xE0 

...

1. Then, we will define a series of classes that will handle MIDI data input and output
streams, the MIDI data parser, and so on, as follows:

class MOStrm: 

# MIDI Output Stream 

... 

class MIFl: 

# MIDI Input File Reader 

... 

class MOFl(MOStrm): 

# MIDI Output File Writer 

... 

class RIStrFl: 

# Raw Input Stream File Reader 

... 

class ROStrFl: 

# Raw Output Stream File Writer 

... 

class MFlPrsr: 

# MIDI File Parser 

... 

class EvtDspch: 

# Event Dispatcher 

... 

class MidiDataRead(MOStrm): 

# MIDI Data Reader 

...

1. Having handled all the MIDI data I/O-related code, we are all set to instantiate our
own PyTorch dataset class. Before we do that, we must define two crucial functions –
one for converting the read MIDI file into a piano roll and one for padding the piano
roll with empty notes. This will normalize the lengths of the musical pieces across the
dataset:

def md_fl_to_pio_rl(md_fl): 

    md_d = MidiDataRead(md_fl, dtm=0.3) 

    pio_rl = md_d.pio_rl.transpose() 

    pio_rl[pio_rl > 0] = 1     

    return pio_rl 

def pd_pio_rl(pio_rl, mx_l=132333, pd_v=0):         

    orig_rol_len = pio_rl.shape[1]     

    pdd_rol = np.zeros((88, mx_l)) 

    pdd_rol[:] = pd_v     

    pdd_rol[:, - orig_rol_len:] = pio_rl 

    return pdd_rol

1. Now, we can define our PyTorch dataset class, as follows:



class NtGenDataset(data.Dataset):     

    def __init__(self, md_pth, mx_seq_ln=1491):         

        ...     

    def mx_len_upd(self):         

        ...    

    def __len__(self):         

        return len(self.md_fnames_ful)     

    def __getitem__(self, index):         

        md_fname_ful = self.md_fnames_ful[index]         

        pio_rl = md_fl_to_pio_rl(md_fname_ful) 

        seq_len = pio_rl.shape[1] - 1 

        ip_seq = pio_rl[:, :-1] 

        gt_seq = pio_rl[:, 1:] 

        ... 

        return (torch.FloatTensor(ip_seq_pad), 

                torch.LongTensor(gt_seq_pad), torch.LongTensor([seq_len]))

1. Besides the dataset class, we must add another helper function to post-process the
music sequences in a batch of training data into three separate lists. These will be
input sequences, output sequences, and lengths of sequences, ordered by the lengths
of the sequences in descending order:

def pos_proc_seq(btch): 

    ip_seqs, op_seqs, lens = btch     

    ... 

    ord_tr_data_tups = sorted(tr_data_tups, 

                                         key=lambda c: int(c[2]), 

                                         reverse=True) 

    ip_seq_splt_btch, op_seq_splt_btch, btch_splt_lens = zip(*ord_tr_data_tups) 

    ...   

    return tps_ip_seq_btch, ord_op_seq_btch, list(ord_btch_lens_l)

1. For this exercise, we will be using a set of Mozart's compositions. You can download
the dataset from the piano-midi website [7.5] : . The downloaded folder consists of 21
MIDI files, which we will split into 18 training and three validation set files. The
downloaded data is stored under ./mozart/train  and ./mozart/valid . Once downloaded,
we can read the data and instantiate our own training and validation dataset loaders:

training_dataset = NtGenDataset('./mozart/train', mx_seq_ln=None) 

training_datasetloader = data.DataLoader(training_dataset, batch_size=5,shuffle=True, drop_last=T

validation_dataset = NtGenDataset('./mozart/valid/', mx_seq_ln=None) 

validation_datasetloader = data.DataLoader(validation_dataset, batch_size=3, shuffle=False, drop_

X_validation = next(iter(validation_datasetloader)) 

X_validation[0].shape

This should give us the following output:

Figure 7 .11 – Sample music data dimensions

As we can see, the first validation batch consists of three sequences of length 1,587
(notes), where each sequence is encoded into an 88-size vector, with 88 being the total
number of piano keys. For those of you who are trained musicians, here is a music sheet
equivalent of the first few notes of one of the validation set music files:



Figure 7 .12 – Music sheet of a Mozart composition

Alternatively, we can visualize the sequence of notes as a matrix with 88 rows, one per
piano key. The following is a visual matrix representation of the preceding melody (the
first 300 notes out of 1,587):

Figure 7 .13 – Matrix representation of a Mozart composition

Dataset citation

The MIDI, audio (MP3, OGG), and video files of Bernd Krueger are licensed under
the CC BY-SA Germany License. Name: Bernd Krueger Source: http://www.piano-
midi.de. The distribution or public playback of these files is only allowed under
identical license conditions. The scores are open source.

We will now define the LSTM model and training routine.

Defining the LSTM model and training routine

So far, we have managed to successfully load a MIDI dataset and use it to create our own
training and validation data loaders. In this section, we will define the LSTM model

http://www.piano-midi.de/


architecture, as well as the training and evaluation routines that shall be run during the
model training loop. Let's get started:

1. First, we must define the model architecture. As we mentioned earlier, we will use an
LSTM model that consists of an encoder layer that encodes the 88-dimensional
representation of the input data at each time step of the sequence into a 512-
dimensional hidden layer representation. The encoder is followed by two LSTM layers,
followed by a fully connected layer that finally softmaxes into the 88 classes.

As per the different types of recurrent neural networks (RNNs) we discussed in
Chapter 4, Deep Recurrent Model Architectures, this is a many-to-one sequence
classification task, where the input is the entire sequence from time step 0 to time step t
and the output is one of the 88 classes at time step t+1, as follows:

class MusicLSTM(nn.Module):     

    def __init__(self, ip_sz, hd_sz, n_cls, lyrs=2):         

        ...        

        self.nts_enc = nn.Linear(in_features=ip_sz, out_features=hd_sz)         

        self.bn_layer = nn.BatchNorm1d(hd_sz)         

        self.lstm_layer = nn.LSTM(hd_sz, hd_sz, lyrs)         

        self.fc_layer = nn.Linear(hd_sz, n_cls) 

         

    def forward(self, ip_seqs, ip_seqs_len, hd=None): 

        ... 

        pkd = torch.nn.utils.rnn.pack_padded_sequence(nts_enc_ful, ip_seqs_len) 

        op, hd = self.lstm_layer(pkd, hd) 

        ... 

        lgts = self.fc_layer(op_nrm_drp.permute(2,0,1)) 

        ... 

        zero_one_lgts = torch.stack((lgts, rev_lgts), dim=3).contiguous() 

        flt_lgts = zero_one_lgts.view(-1, 2) 

        return flt_lgts, hd

1. Once the model architecture has been defined, we can specify the model training
routine. We will use the Adam optimizer with gradient clipping to avoid overfitting.
Another measure that's already in place to counter overfitting is the use of a dropout
layer, as specified in the previous step:

def lstm_model_training(lstm_model, lr, ep=10, val_loss_best=float("inf")): 

    ... 

    for curr_ep in range(ep):

        ... 

        for batch in training_datasetloader: 

            ... 

            lgts, _ = lstm_model(ip_seq_b_v, seq_l) 

            loss = loss_func(lgts, op_seq_b_v) 

            ... 

        if vl_ep_cur < val_loss_best: 

            torch.save(lstm_model.state_dict(), 'best_model.pth') 

            val_loss_best = vl_ep_cur 

    return val_loss_best, lstm_model

1. Similarly, we will define the model evaluation routine, where a forward pass is run on
the model with its parameters remaining unchanged:

def evaluate_model(lstm_model): 

    ... 

    for batch in validation_datasetloader: 

        ... 

        lgts, _ = lstm_model(ip_seq_b_v, seq_l) 

        loss = loss_func(lgts, op_seq_b_v) 

        vl_loss_full += loss.item() 



        seq_len += sum(seq_l)

    return vl_loss_full/(seq_len*88)

Now, let's train and test the music generation model.

Training and testing the music generation model

In this final section, we will actually train the LSTM model. We will then use the trained
music generation model to generate a music sample that we can listen to and analyze.
Let's get started:

1. We are all set to instantiate our model and start training it. We have used categorical
cross-entropy as the loss function for this classification task. We are training the
model with a learning rate of 0.01  for 10  epochs:

loss_func = nn.CrossEntropyLoss().cpu() 

lstm_model = MusicLSTM(ip_sz=88, hd_sz=512, n_cls=88).cpu() 

val_loss_best, lstm_model = lstm_model_training(lstm_model, lr=0.01, ep=10)

This should output the following:

Figure 7 . 14 – Music LSTM training logs

1. Here comes the fun part. Once we have a next-musical-note-predictor, we can use it
as a music generator. All we need to do is simply initiate the prediction process by
providing an initial note as a cue. The model can then recursively make predictions for



the next note at each time step, wherein the predictions at time step t are appended
to the input sequence at time t+1.

Here, we will write a music generation function that takes in the trained model object, the
intended length of music to be generated, a starting note to the sequence, and
temperature. Temperature is a standard mathematical operation over the softmax  function
at the classification layer. It is used to manipulate the distribution of softmax
probabilities, either by broadening or shrinking the softmaxed probabilities distribution.
The code is as follows:

def generate_music(lstm_model, ln=100, tmp=1, seq_st=None): 

    ... 

    for i in range(ln): 

        op, hd = lstm_model(seq_ip_cur, [1], hd) 

        probs = nn.functional.softmax(op.div(tmp), dim=1) 

        ... 

    gen_seq = torch.cat(op_seq, dim=0).cpu().numpy() 

    return gen_seq

Finally, we can use this function to create a brand-new music composition:

seq = generate_music(lstm_model, ln=100, tmp=1, seq_st=None) 

midiwrite('generated_music.mid', seq, dtm=0.2)

This should create the musical piece and save it as a MIDI file in the current directory. We
can open the file and play it to hear what the model has produced. Nonetheless, we can
also view the visual matrix representation of the produced music:

io.imshow(seq)

This should give us the following output:

Figure 7 .15 – Matrix representation of an AI generated music sample

Furthermore, here is what the generated music would look like as a music sheet:



Figure 7 .16 – Music sheet of an AI generated music sample

Here, we can see that the generated melody seems to be not quite as melodious as
Mozart's original compositions. Nonetheless, you can see consistencies in some key
combinations that the model has learned. Moreover, the generated music quality can be
enhanced by training the model on more data, as well as training it for more epochs.

This concludes our exercise on using machine learning to generate music. In this section,
we have demonstrated how to use existing musical data to train a note predictor model
from scratch and use the trained model to generate music. In fact, you can extend the
idea of using generative models to generate samples of any kind of data. PyTorch is an
extremely effective tool when it comes to such use cases, especially due to its
straightforward APIs for data loading, model building/training/testing, and using trained
models as data generators. You are encouraged to try out more such tasks on different
use cases and data types.

Summary

In this chapter, we explored generative models using PyTorch. In the same artistic vein, in
the next chapter, we shall learn how machine learning can be used to transfer the style of
one image to another. With PyTorch at our disposal, we will use CNNs to learn artistic
styles from various images and impose those styles on different images – a task better
known as neural style transfer.
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In the previous chapter, we started exploring generative models using PyTorch. We built
machine learning models that can generate text and music by training the models without
supervision on text and music data, respectively. We will continue exploring generative
modeling in this chapter by applying a similar methodology to image data.

We will mix different aspects of two different images, A and B, to generate a resultant
image, C, that contains the content of image A and the style of image B. This task is also
popularly known as neural style transfer because, in a way, we are transferring the
style of image B to image A in order to achieve image C, as illustrated in the following
figure:

Figure 8.1 – Neural style transfer example

First, we will briefly discuss how to approach this problem and understand the idea
behind achieving style transfer. Using PyTorch, we will then implement our own neural
style transfer system and apply it to a pair of images. Through this implementation
exercise, we will also try to understand the effects of different parameters in the style
transfer mechanism.

By the end of this chapter, you will understand the concepts behind neural style transfer
and be able to build and test your own neural style transfer model using PyTorch.

This chapter covers the following topics:

Understanding how to transfer style between images
Implementing neural style transfer using PyTorch
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Understanding how to transfer style between images

In Chapter 3, Deep CNN Architectures, we discussed convolutional neural networks

(CNNs) in detail. CNNs are largely the most successful class of models when working
with image data. We have seen how CNN-based architectures are among the best-
performing architectures of neural networks on tasks such as image classification, object
detection, and so on. One of the core reasons behind this success is the ability of
convolutional layers to learn spatial representations.

For example, in a dog versus cat classifier, the CNN model is essentially able to capture
the content of an image in its higher-level features, which helps it detect dog-specific
features against cat-specific features. We will leverage this ability of an image classifier
CNN to grasp the content of an image.

We know that VGG is a powerful image classification model, as discussed in Chapter 3,
Deep CNN Architectures. We are going to use the convolutional part of the VGG model
(excluding the linear layers) to extract content-related features from an image.

We know that each convolutional layer produces, say, N feature maps of dimensions X*Y

each. For example, let's say we have a single channel (grayscale) input image of size (3,3)
and a convolutional layer where the number of output channels (N) is 3, the kernel size is
(2,2) with a stride of (1,1), and there's no padding. This convolutional layer will produce 3
(N) feature maps each of size 2x2, hence X=2 and Y=2 in this case.

We can represent these N feature maps produced by the convolutional layer as a 2D
matrix of size N*M, where M=X*Y. By defining the output of each convolutional layer as a
2D matrix, we can define a loss function that's attached to each convolutional layer. This
loss function, called the content loss, is the squared loss between the expected and
predicted outputs of the convolutional layers, as demonstrated in the following diagram,
with N=3, X=2, and Y=2:

Figure 8. 2 – Content loss schematic

As we can see, the input image (image C, as per our notation in Figure 8. 1) in this
example is transformed into three feature maps by the convolutional (conv) layer.
These three feature maps, of size 2x2 each, are formatted into a 3x4 matrix. This matrix is



compared with the expected output, which is obtained by passing image A (the content
image) through the same flow. The pixel-wise squared summed loss is then calculated,
which we call the content loss.

Now, for extracting style from an image, we will use gram matrices [8.1] derived from the
inner product between the rows of the reduced 2D matrix representations, as
demonstrated in the following diagram:

Figure 8. 3 – Style loss schematic

The gram matrix computation is the only extra step here compared to the content loss
calculations. Also, as we can see, the output of the pixel-wise squared summed loss is
quite a large number compared to the content loss. Hence, this number is normalized by
dividing it by N*X*Y; that is, the number of feature maps (N) times the length (X) times
the breadth (Y) of a feature map. This also helps standardize the style loss metric across
different convolutional layers, which have a different N, X, and Y. Details of the
implementation can be found in the original paper that introduced neural style transfer
[8.2] .

Now that we understand the concept of content and style loss, let's take a look at how
neural style transfer works, as follows:

1. For the given VGG (or any other CNN) network, we define which convolutional layers
in the network should have a content loss attached to them. Repeat this exercise for
style loss.

2. Once we have those lists, we pass the content image through the network and
compute the expected convolutional outputs (2D matrices) at the convolutional layers
where the content loss is to be calculated.

3. Next, we pass the style image through the network and compute the expected gram
matrices at the convolutional layers. This is where the style loss is to be calculated, as
demonstrated in the following diagram.

In the following diagram, for example, the content loss is to be calculated at the second
and third convolutional layers, while the style loss is to be calculated at the second, third,
and fifth convolutional layers:



Figure 8. 4 – Style transfer architecture schematic

Now that we have the content and style targets at the decided convolutional layers, we
are all set to generate an image that contains the content of the content image and the
style of the style image.

For initialization, we can either use a random noise matrix as our starting point for the
generated image, or directly use the content image to start with. We pass this image
through the network and compute the style and content losses at the pre-selected
convolutional layers. We add style losses to get the total style loss and content losses to
get the total content loss. Finally, we obtain a total loss by summing these two
components in a weighted fashion.

If we give more weight to the style component, the generated image will have more style
reflected on it and vice versa. Using gradient descent, we backpropagate the loss all the
way back to the input in order to update our generated image. After a few epochs, the
generated image should evolve in a way that it produces the content and style
representations that minimize the respective losses, thereby producing a style transferred
image.

In the preceding diagram, the pooling layer is average pooling-based instead of the
traditional max pooling. Average pooling is deliberately used for style transfer to ensure
smooth gradient flow. We want the generated images not to have sharp changes between
pixels. Also, it is worth noticing that the network in the preceding diagram ends at the
layer where the last style or content loss is calculated. Hence, in this case, because there
is no loss associated with the sixth convolutional layer of the original network, it is
meaningless to talk about layers beyond the fifth convolutional layer in the context of style
transfer.

In the next section, we will implement our own neural style transfer system using
PyTorch. With the help of a pre-trained VGG model, we will use the concepts we've
discussed in this section to generate artistically styled images. We will also explore the
impact of tuning the various model parameters on the content and texture/style of
generated images.

Implementing neural style transfer using PyTorch



Having discussed the internals of a neural style transfer system, we are all set to build
one using PyTorch. In the form of an exercise, we will load a style and a content image.
Then, we will load the pre-trained VGG model. After defining which layers to compute the
style and content loss on, we will trim the model so that it only retains the relevant layers.
Finally, we will train the neural style transfer model in order to refine the generated
image epoch by epoch.

Loading the content and style images

In this exercise, we will only show the important parts of the code for demonstration
purposes. To access the full code, go to our github repository [8.3] . Follow these steps:

1. Firstly, we need to import the necessary libraries :

from PIL import Image 

import matplotlib.pyplot as pltimport torch 

import torch.nn as nn 

import torch.optim as optim 

import torchvisiondvc = torch.device("cuda" if torch.cuda.is_available() else "cpu")

Amng other libraries, we import the torchvision  library to load the pre-trained VGG model
and other computer vision-related utilities.

1. Next, we need a style and a content image. We will use the unsplash website [8.4] to
download an image of each kind. The downloaded images are included in the code
repository of this book. In the following code, we are writing a function that will load
the images as tensors:

def image_to_tensor(image_filepath,  image_dimension=128): 

    img = Image.open(image_filepath).convert('RGB') 

    # display image 

    … 

    torch_transformation =       torchvision.transforms.Compose([ 

        torchvision.transforms.Resize(img_size), 

        torchvision.transforms.ToTensor() 

                              ]) 

    img = torch_transformation(img).unsqueeze(0) 

    return img.to(dvc, torch.float) 

style_image = image_to_tensor("./images/style.jpg") 

content_image =image_to_tensor("./images/content.jpg")

This should give us the following output:



Figure 8. 5 – Style and content images

So, the content image is a real-life photograph of the Taj Mahal, whereas the style image
is an art painting. Using style transfer, we hope to generate an artistic Taj Mahal painting.
However, before we do that, we need to load and trim the VGG19 model.

Loading and trimming the pre-trained VGG19 model

In this part of the exercise, we will use a pre-trained VGG model and retain its
convolutional layers. We will make some minor changes to the model to make it usable for
neural style transfer. Let's get started:

1. We will first load the pre-trained VGG19 model and use its convolutional layers to
generate the content and style targets to yield the content and style losses,
respectively:



vgg19_model = torchvision.models.vgg19(pretrained=True).to(dvc) 

print(vgg19_model)

The output should be as follows:

Figure 8. 6 – VGG19 model

1. We do not need the linear layers; that is, we only need the convolutional part of the
model. In the preceding code, this can be achieved by only retaining the features
attribute of the model object, as follows:

vgg19_model = vgg19_model.features

Note

In this exercise, we are not going to tune the parameters of the VGG model. All we
are going to tune is the pixels of the generated image, right at the input end of the
model. Hence, we will ensure that the parameters of the loaded VGG model are
fixed.

1. We must freeze the parameters of the VGG model with the following code:

for param in vgg19_model.parameters(): 

    param.requires_grad_(False)

1. Now that we've loaded the relevant section of the VGG model, we need to change the
maxpool  layers into average pooling layers, as discussed in the previous section. While



doing so, we will take note of where the convolutional layers are located in the model:

conv_indices = []for i in range(len(vgg19_model)): 

    if vgg19_model[i]._get_name() == 'MaxPool2d': 

        vgg19_model[i] =  nn.AvgPool2d(kernel_size=vgg19_model[i].kernel_size, 

stride=vgg19_model[i].stride, padding=vgg19_model[i].padding) 

    if vgg19_model[i]._get_name() == 'Conv2d': 

        conv_indices.append(i) 

conv_indices = dict(enumerate(conv_indices, 1))print(vgg19_model)

The output should be as follows:

Figure 8. 7 – Modified VGG19 model

As we can see, the linear layers have been removed and the max pooling layers have been
replaced by average pooling layers, as indicated by the red boxes in the preceding figure.

In the preceding steps, we loaded a pre-trained VGG model and modified it in order to use
it as a neural style transfer model. Next, we will transform this modified VGG model into a



neural style transfer model.

Building the neural style transfer model

At this point, we can define which convolutional layers we want the content and style
losses to be calculated on. In the original paper, style loss was calculated on the first five
convolutional layers, while content loss was calculated on the fourth convolutional layer
only. We will follow the same convention, although you are welcome to try out different
combinations and observe their effects on the generated image. Follow these steps:

1. First, we list the layers we need to have the style and content loss on:

layers = {1: 's', 2: 's', 3: 's', 4: 'sc', 5: 's'}

Here, we have defined the first to fifth convolutional layers, which are attached to the
style loss, and the fourth convolutional layer, which is attached to the content loss.

1. Now, let's remove the unnecessary parts of the VGG model. We shall only retain it
until the fifth convolutional layer, as shown here:

vgg_layers = nn.ModuleList(vgg19_model) 

last_layer_idx = conv_indices[max(layers.keys())] 

vgg_layers_trimmed = vgg_layers[:last_layer_idx+1] 

neural_style_transfer_model = nn.Sequential(*vgg_layers_trimmed) 

print(neural_style_transfer_model)

This should give us the following output:

Figure 8. 8 – Neural style transfer model object

As we can see, we have transformed the VGG model with 16 convolutional layers into a
neural style transfer model with five convolutional layers.

Training the style transfer model

In this section, we'll start working on the image that will be generated. We can initialize
this image in many ways, such as by using a random noise image or using the content
image as the initial image. Currently, we are going to start with random noise. Later, we
will also see how using the content image as the starting point impacts the results. Follow
these steps:



1. The following code demonstrates the process of initializing a torch  tensor with
random numbers:

# initialize as the content image 

# ip_image = content_image.clone() 

# initialize as random noise:

ip_image = torch.randn(content_image.data.size(), device=dvc) 

plt.figure() 

plt.imshow(ip_image.squeeze(0).cpu().detach().numpy().transpose(1,2,0).clip(0,1));

This should give us the following output:

Figure 8. 9 – Random noise image

1. Finally, we can start the model training loop. First, we will define the number of
epochs to train for, the relative weightage to provide for the style and content losses,
and instantiate the Adam optimizer for gradient descent-based optimization with a
learning rate of 0.1 :

num_epochs=180 

wt_style=1e6 

wt_content=1 

style_losses = [] 

content_losses = [] 

opt = optim.Adam([ip_image.requires_grad_()], lr=0.1)

1. Upon starting the training loop, we initialize the style and content losses to zero at the
beginning of the epoch, and then clip the pixel values of the input image between 0
and 1  for numerical stability:

for curr_epoch in range(1, num_epochs+1):     

    ip_image.data.clamp_(0, 1) 

    opt.zero_grad() 

    epoch_style_loss = 0 

    epoch_content_loss = 0

1. At this stage, we have reached a crucial step in the training iteration. Here, we must
calculate the style and content losses for each of the pre-defined style and content
convolutional layers. The individual style losses and content losses for each of the



respective layers are added together to get the total style and content loss for the
current epoch:

    for k in layers.keys(): 

        if 'c' in layers[k]: 

            target = neural_style_transfer_model[:conv_indices[k]+1](content_image).detach() 

            ip = neural_style_transfer_model[:conv_indices[k]+1](ip_image) 

            epoch_content_loss += torch.nn.functional.mse_loss(ip, target) 

        if 's' in layers[k]: 

            target = gram_matrix(neural_style_transfer_model[:conv_indices[k]+1](style_image)).d

            ip = gram_matrix(neural_style_transfer_model[:conv_indices[k]+1](ip_image)) 

            epoch_style_loss += torch.nn.functional.mse_loss(ip, target)

As shown in the preceding code, for both the style and content losses, first, we compute
the style and content targets (ground truths) using the style and content image. We use
.detach()  for the targets to indicate that these are not trainable but just fixed target
values. Next, we compute the predicted style and content outputs based on the generated
image as input, at each of the style and content layers. Finally, we compute the style and
content losses.

1. For the style loss, we also need to compute the gram matrix using a pre-defined gram
matrix function, as shown in the following code:

def gram_matrix(ip): 

    num_batch, num_channels, height, width = ip.size() 

    feats = ip.view(num_batch * num_channels, width *   height) 

    gram_mat = torch.mm(feats, feats.t()) 

    return gram_mat.div(num_batch * num_channels *        width * height)

As we mentioned earlier, we can compute an inner dot product using the torch.mm
function. This computes the gram matrix and normalizes the matrix by dividing it by the
number of feature maps times the width times the height of each feature map.

1. Moving on in our training loop, now that we've computed the total style and content
losses, we need to compute the final total loss as a weighted sum of these two, using
the weights we defined earlier:

    epoch_style_loss *= wt_style 

    epoch_content_loss *= wt_content 

    total_loss = epoch_style_loss + epoch_content_loss 

    total_loss.backward()

Finally, at every k epochs, we can see the progression of our training by looking at the
losses as well as looking at the generated image. The following figure shows the evolution
of the generated style transferred image for the previous code for a total of 180 epochs
recorded at every 20 epochs:



Figure 8. 10 – Neural style transfer epoch-wise generated image

It is quite clear that the model begins by applying the style from the style image to the
random noise. As training proceeds, the content loss starts playing its role, thereby
imparting content to the styled image. By epoch 180, we can see the generated image,
which looks like a good approximation of an artistic painting of the Taj Mahal. The
following graph shows the decreasing style and content losses as the epochs progress
from 0 to 180:



Figure 8. 11 – Style and content loss curves

Noticeably, the style loss sharply goes down initially, which is also evident in Figure 8. 10

in that the initial epochs mark the imposition of style on the image more than the content.
At the advanced stages of training, both losses decline together gradually, resulting in a
style transferred image, which is a decent compromise between the artwork of the style
image and the realism of a photograph that's been taken with a camera.

Experimenting with the style transfer system

Having successfully trained a style transfer system in the previous section, we will now
look at how the system responds to different hyperparameter settings. Follow these steps:

1. In the preceding section, we set the content weight to 1  and the style weight to 1e6 .
Let's increase the style weight 10x further – that is, to 1e7  – and observe how it
affects the style transfer process. Upon training with the new weights for 600 epochs,
we get the following progression of style transfer:



Figure 8. 12 – Style transfer epochs with higher style weights

Here, we can see that initially, it required many more epochs than in the previous
scenario to reach a reasonable result. More importantly, the higher style weight does
seem to have an effect on the generated image. When we look at the images in the
preceding figure compared to the ones in Figure 8. 10, we find that the former have a
stronger resemblance to the style image shown in Figure 8. 5.

1. Likewise, reducing the style weight from 1e6  to 1e5  produces a more content-focused
result, as can be seen in the following screenshot:



Figure 8. 13 – Style transfer epochs with lower style weights

Compared to the scenario with a higher style weight, having a lower style weight means it
takes far fewer epochs to get a reasonable-looking result. The amount of style in the
generated image is much smaller and is mostly filled with the content image data. We only
trained this scenario for 6 epochs as the results saturate after that point.

1. A final change could be to initialize the generated image with the content image
instead of the random noise, while using the original style and content weights of 1e6
and 1 , respectively. The following figure shows the epoch-wise progression in this
scenario:



Figure 8. 14 – Style transfer epochs with content image initialization

By comparing the preceding figure to Figure 8. 10, we can see that having the content
image as a starting point gives us a different path of progression to getting a reasonable
style transferred image. It seems that both the content and style components are being
imposed on the generated image more simultaneously than in Figure 8. 10, where the
style got imposed first, followed by the content. The following graph confirms this
hypothesis:

Figure 8. 15 – Style and content loss curves with content image initialization



As we can see, both style and content losses are decreasing together as the epochs
progress, eventually saturating toward the end. Nonetheless, the end results in both
Figures 8. 10 and 8. 14 or even Figures 8. 12 and 8. 13 all represent reasonable artistic
impressions of the Taj Mahal.

We have successfully built a neural style transfer model using PyTorch, wherein using a
content image – a photograph of the beautiful Taj Mahal – and a style image – a canvas
painting – we generated a reasonable approximation of an artistic painting of the Taj

Mahal. This application can be extended to various other combinations. Swapping the
content and style images could also produce interesting results and give more insight into
the inner workings of the model.

You are encouraged to extend the exercise we discussed in this chapter by doing the
following:

Changing the list of style and content layers
Using larger image sizes
Trying more combinations of style and content loss weights
Using other optimizers, such as SGD and LBFGS
Training for longer epochs with different learning rates, in order to observe the
differences in the generated images across all these approaches

Summary

In this chapter, we applied the concept of generative machine learning to images by
generating an image that contains the content of one image and the style of another – a
task known as neural style transfer. In the next chapter, we will expand on this paradigm,
where we'll have a generator that generates fake data and there is a discriminator that
tells apart fake data from real data. Such models are popularly known as generative

adversarial networks (GANs). We will be exploring deep convolutional GANs (DCGANs)
in the next chapter.



6 Deep Convolutional GANs
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Generative neural networks have become a popular and active area of research and
development. A huge amount of credit for this trend goes to a class of models that we are
going to discuss in this chapter. These models are called generative adversarial

networks (GANs) and were introduced in 2014. Ever since the introduction of the basic
GAN model, various types of GANs have been, and are being, invented for different
applications.

Essentially, a GAN is composed of two neural networks – a generator and a
discriminator. Let's look at an example of the GAN that is used to generate images. For
such a GAN, the task of the generator would be to generate realistic-looking fake images,
and the task of the discriminator would be to tell the real images apart from the fake
images.

In a joint optimization procedure, the generator would ultimately learn to generate such
good fake images that the discriminator will essentially be unable to tell them apart from
real images. Once such a model is trained, the generator part of it can then be used as a
reliable data generator. Besides being used as a generative model for unsupervised
learning, GANs have also proven useful in semi-supervised learning.

In the image example, for instance, the features learned by the discriminator model could
be used to improve the performance of classification models trained on the image data.
Besides semi-supervised learning, GANs have also proven to be useful in reinforcement
learning, which is a topic that we will discuss in Chapter 10, Deep Reinforcement

Learning.

A particular type of GAN that we will focus on in this chapter is the deep convolutional

GAN (DCGAN). A DCGAN is essentially an unsupervised convolution neural network

(CNN) model. Both the generator and the discriminator in a DCGAN are purely CNNs

with no fully connected layers. DCGANs have performed well in generating realistic
images, and they can be a good starting point for learning how to build, train, and run
GANs from scratch.

In this chapter, we will first understand the various components within a GAN – the
generator and the discriminator models and the joint optimization schedule. We will then
focus on building a DCGAN model using PyTorch. Next, we will use an image dataset to
train and test the performance of the DCGAN model. We will conclude this chapter by
revisiting the concept of style transfer on images and exploring the Pix2Pix GAN model,
which can efficiently perform a style transfer on any given pair of images.

https://packt.link/EarlyAccessCommunity


We will also learn how the various components of a Pix2Pix GAN model relate to that of a
DCGAN model. After finishing this chapter, we will truly understand how GANs work and
will be able to build any type of GAN model using PyTorch. This chapter is broken down
into the following topics:

Defining the generator and discriminator networks
Training a DCGAN using PyTorch
Using GANs for style transfer

Defining the generator and discriminator networks

As mentioned earlier, GANs are composed of two components – the generator and the
discriminator. Both of these are essentially neural networks. Generators and
discriminators with different neural architectures produce different types of GANs. For
example, DCGANs purely have CNNs as the generator and discriminator. You can find a
list of different types of GANs along with their PyTorch implementations at [9.1] .

For any GAN that is used to generate some kind of real data, the generator usually takes
random noise as input and produces an output with the same dimensions as the real data.
We call this generated output fake data. The discriminator, on the other hand, works as a
binary classifier. It takes in the generated fake data and the real data (one at a time) as
input and predicts whether the input data is real or fake. Figure 9 .1 shows a diagram of
the overall GAN model schematic:

Figure 9 .1 – A GAN schematic

The discriminator network is optimized like any binary classifier, that is, using the binary
cross-entropy function. Therefore, the discriminator model's motivation is to correctly
classify real images as real and fake images as fake. The generator network has quite the
opposite motivation. The generator loss is mathematically expressed as -log(D(G(x))),
where x is random noise inputted into the generator model, G; G(x) is the generated fake
image by the generator model; and D(G(x)) is the output probability of the discriminator
model, D, that is, the probability of the image being real.



Therefore, the generator loss is minimized when the discriminator thinks that the
generated fake image is real. Essentially, the generator is trying to fool the discriminator
in this joint optimization problem.

In execution, these two loss functions are backpropagated alternatively. That is, at every
iteration of training, first, the discriminator is frozen, and the parameters of the generator
networks are optimized by backpropagating the gradients from the generator loss.

Then, the tuned generator is frozen while the discriminator is optimized by
backpropagating the gradients from the discriminator loss. This is what we call joint
optimization. It has also been referred to as being equivalent to a two-player Minimax
game in the original GAN paper [9.2] .

Understanding the DCGAN generator and discriminator

For the particular case of DCGANs, let's consider what the generator and discriminator
model architectures look like. As already mentioned, both are purely convolutional
models. Figure 9 .2 shows the generator model architecture for a DCGAN:

Figure 9 .2 – The DCGAN generator model architecture

First, the random noise input vector of size 64 is reshaped and projected into 128 feature
maps of size 16x16 each. This projection is achieved using a linear layer. From there on,
a series of upsampling and convolutional layers follow. The first upsampling layer simply
transforms the 16x16 feature maps into 32x32 feature maps using the nearest neighbor
upsampling strategy.

This is followed by a 2D convolutional layer with a 3x3 kernel size and 128 output feature
maps. The 128 32x32 feature maps outputted by this convolutional layer are further
upsampled to 64x64-sized feature maps, which is followed by two 2D convolutional layers
resulting in the generated (fake) RGB image of size 64x64.

Note

We have omitted the batch normalization and leaky ReLU layers to avoid clutter in
the preceding architectural representation. The PyTorch code in the next section
will have these details mentioned and explained.

Now that we know what the generator model looks like, let's examine what the
discriminator model looks like. Figure 9 .3 shows the discriminator model architecture:



Figure 9 .3 – The DCGAN discriminator model architecture

As you can see, a stride of 2 at every convolutional layer in this architecture helps to
reduce the spatial dimension, while the depth (that is, the number of feature maps) keeps
growing. This is a classic CNN-based binary classification architecture being used here to
classify between real images and generated fake images.

Having understood the architectures of the generator and the discriminator network, we
can now build the entire DCGAN model based on the schematic in Figure 9 .1 and train
the DCGAN model on an image dataset.

In the next section, we will use PyTorch for this task. We will discuss, in detail, the
DCGAN model instantiation, loading the image dataset, jointly training the DCGAN
generator and discriminator, and generating sample fake images from the trained DCGAN
generator.

Training a DCGAN using PyTorch

In this section, we will build, train, and test a DCGAN model using PyTorch in the form of
an exercise. We will use an image dataset to train the model and test how well the
generator of the trained DCGAN model performs when producing fake images.

Defining the generator

In the following exercise, we will only show the important parts of the code for
demonstration purposes. In order to access the full code, you can refer to our github
repository [9.3] :

1. First, we need to import  the required libraries, as follows:

import os 

import numpy as np 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

from torch.utils.data import DataLoader 

from torch.autograd import Variable 



import torchvision.transforms as transforms 

from torchvision.utils import save_image 

from torchvision import datasets

In this exercise, we only need torch  and torchvision  to build the DCGAN model.

1. After importing the libraries, we specify some model hyperparameters, as shown in
the following code:

num_eps=10 

bsize=32 

lrate=0.001 

lat_dimension=64 

image_sz=64 

chnls=1 

logging_intv=200

We will be training the model for 10  epochs with a batch size of 32  and a learning rate of
0.001 . The expected image size is 64x64x3. lat_dimension  is the length of the random noise
vector, which essentially means that we will draw the random noise from a 64-
dimensional latent space as input to the generator model.

1. Now we define the generator model object. The following code is in direct accordance
with the architecture shown in Figure 9 .2:

class GANGenerator(nn.Module): 

    def __init__(self): 

        super(GANGenerator, self).__init__() 

        self.inp_sz = image_sz // 4 

        self.lin =   nn.Sequential(nn.Linear(lat_dimension, 128 * self.inp_sz ** 2)) 

        self.bn1 = nn.BatchNorm2d(128) 

        self.up1 = nn.Upsample(scale_factor=2) 

        self.cn1 = nn.Conv2d(128, 128, 3, stride=1, padding=1) 

        self.bn2 = nn.BatchNorm2d(128, 0.8) 

        self.rl1 = nn.LeakyReLU(0.2, inplace=True) 

        self.up2 = nn.Upsample(scale_factor=2) 

        self.cn2 = nn.Conv2d(128, 64, 3, stride=1, padding=1) 

        self.bn3 = nn.BatchNorm2d(64, 0.8) 

        self.rl2 = nn.LeakyReLU(0.2, inplace=True) 

        self.cn3 = nn.Conv2d(64, chnls, 3, stride=1, padding=1) 

        self.act = nn.Tanh()

1. After defining the _init_  method, we define the forward  method, which is essentially
just calling the layers in a sequential manner:

    def forward(self, x): 

        x = self.lin(x) 

        x = x.view(x.shape[0], 128, self.inp_sz, self.inp_sz) 

        x = self.bn1(x) 

        x = self.up1(x) 

        x = self.cn1(x) 

        x = self.bn2(x) 

        x = self.rl1(x) 

        x = self.up2(x) 

        x = self.cn2(x) 

        x = self.bn3(x) 

        x = self.rl2(x) 

        x = self.cn3(x) 

        out = self.act(x) 

        return out

We have used the explicit layer-by-layer definition in this exercise as opposed to the
nn.Sequential  method; this is because it makes it easier to debug the model if something



goes wrong.We can also see the batch normalization and leaky ReLU layers in the code,
which are not mentioned in Figure 9 .2.

FAQ - Why are we using batch normalisation?

Batch normalization is used after the linear or convolutional layers to both fasten
the training process and reduce sensitivity to the initial network weights.

FAQ - Why are we using leaky ReLU?

ReLU might lose all the information for inputs with negative values. A leaky ReLU
set with a 0.2 negative slope gives 20% weightage to incoming negative
information, which might help us to avoid vanishing gradients during the training
of a GAN model.

Next, we will take a look at the PyTorch code to define the discriminator network.

Defining the discriminator

Similar to the generator, we will now define the discriminator model as follows:

1. Once again, the following code is the PyTorch equivalent for the model architecture
shown in Figure 9 .3:

class GANDiscriminator(nn.Module): 

    def __init__(self): 

        super(GANDiscriminator, self).__init__() 

        def disc_module(ip_chnls, op_chnls, bnorm=True): 

            mod = [nn.Conv2d(ip_chnls, op_chnls, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), 

                   nn.Dropout2d(0.25)] if bnorm: 

                mod += [nn.BatchNorm2d(op_chnls, 0.8)] 

            return mod 

        self.disc_model = nn.Sequential( 

            *disc_module(chnls, 16, bnorm=False), 

            *disc_module(16, 32), 

            *disc_module(32, 64), 

            *disc_module(64, 128), 

        ) 

        # width and height of the down-sized image 

        ds_size = image_sz // 2 ** 4 

        self.adverse_lyr = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid())

First, we have defined a general discriminator module, which is a cascade of a
convolutional layer, an optional batch normalization layer, a leaky ReLU layer, and a
dropout layer. In order to build the discriminator model, we repeat this module
sequentially four times – each time with a different set of parameters for the convolutional
layer.

The goal is to input a 64x64x3 RGB image and to increase the depth (that is, the number
of channels) and decrease the height and width of the image as it is passed through the
convolutional layers.

The final discriminator module's output is flattened and passed through the adversarial
layer. Essentially, the adversarial layer fully connects the flattened representation to the
final model output (that is, a binary output ). This model output is then passed through a
sigmoid activation function to give us the probability of the image being real (or not fake).

1. The following is the forward  method for the discriminator, which takes in a 64x64 RGB
image as input and produces the probability of it being a real image:



    def forward(self, x): 

        x = self.disc_model(x) 

        x = x.view(x.shape[0], -1) 

        out = self.adverse_lyr(x) 

        return out

1. Having defined the generator and discriminator models, we can now instantiate one of
each. We also define our adversarial loss function as the binary cross-entropy loss
function in the following code:

# instantiate the discriminator and generator models 

gen = GANGenerator() 

disc = GANDiscriminator() 

# define the loss metric 

adv_loss_func = torch.nn.BCELoss()

The adversarial loss function will be used to define the generator and discriminator loss
functions later in the training loop. Conceptually, we are using binary cross-entropy as the
loss function because the targets are essentially binary – that is, either real images or fake
images. And, binary cross-entropy loss is a well-suited loss function for binary
classification tasks.

Loading the image dataset

For the task of training a DCGAN to generate realistic-looking fake images, we are going
to use the well-known MNIST  dataset which contains images of handwritten digits from 0 to
9. By using torchvision.datasets , we can directly download the MNIST  dataset and create a
dataset  and a dataloader  instance out of it:

# define the dataset and corresponding dataloader 

dloader = torch.utils.data.DataLoader( 

    datasets.MNIST( 

        "./data/mnist/", download=True, 

        transform=transforms.Compose( 

            [transforms.Resize((image_sz, image_sz)), 

             transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]),), batch_size=bsize, sh

Here is an example of a real image from the MNIST  dataset:



Figure 9. 4 – A real image from the MNIST dataset

Dataset citation

[LeCun et al., 1998a] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-
based learning applied to document recognition." Proceedings of the IEEE,
86(11):2278-2324, November 1999.

Yann LeCun (Courant Institute, NYU) and Corinna Cortes (Google Labs, New
York) hold the copyright of the MNIST dataset, which is a derivative work from
the original NIST datasets. The MNIST dataset is made available under the terms
of the Creative Commons Attribution-Share Alike 3.0 license.

So far, we have defined the model architecture and the data pipeline. Now it is time for us
to actually write the DCGAN model training routine, which we will do in the following
section.



Training loops for DCGANs

In this section, we will train the DCGAN model:

1. Defining the optimization schedule: Before starting the training loop, we will
define the optimization schedule for both the generator and the discriminator. We will
use the Adam  optimizer for our model. In the original DCGAN paper [9. 4] , the beta1

and beta2 parameters of the Adam optimizer are set to 0.5 and 0.999, as opposed to
the usual 0.9 and 0.999.

We have retained the default values of 0.9 and 0.999 in our exercise. However, you are
welcome to use the exact same values mentioned in the paper for similar results:

# define the optimization schedule for both G and D 

opt_gen = torch.optim.Adam(gen.parameters(), lr=lrate) 

opt_disc = torch.optim.Adam(disc.parameters(), lr=lrate)

1. Training the generator: Finally, we can now run the training loop to train the
DCGAN. As we will be jointly training the generator and the discriminator, the
training routine will consist of both these steps – training the generator model and
training the discriminator model – in an alternate fashion. We will begin with training
the generator in the following code:

os.makedirs("./images_mnist", exist_ok=True) 

for ep in range(num_eps): 

    for idx, (images, _) in enumerate(dloader): 

        # generate ground truths for real and fake images 

        good_img = Variable(torch.FloatTensor(images.shape[0], 1).fill_(1.0), requires_grad=Fals

        bad_img = Variable(torch.FloatTensor(images.shape[0], 1) .fill_(0.0), requires_grad=Fals

        # get a real image 

        actual_images = Variable(images.type(torch.FloatTensor)) 

        # train the generator model 

        opt_gen.zero_grad() 

        # generate a batch of images based on random noise as input 

        noise = Variable(torch.FloatTensor(np.random.normal(0, 1, (images.shape[0], lat_dimensio

        gen_images = gen(noise) 

        # generator model optimization - how well can it fool the discriminator 

        generator_loss = adv_loss_func(disc(gen_images), good_img) 

        generator_loss.backward() 

        opt_gen.step()

In the preceding code, we first generate the ground truth labels for real and fake images.
Real images are labeled as 1 , and fake images are labeled as 0 . These labels will serve as
the target outputs for the discriminator model, which is a binary classifier.

Next, we load a batch of real images from the MINST dataset loader, and we also use the
generator to generate a batch of fake images using random noise as input.

Finally, we define the generator loss as the adversarial loss between the following:

i) The probability of realness of the fake images (produced by the generator model) as
predicted by the discriminator model.

ii) The ground truth value of 1 .

Essentially, if the discriminator is fooled to perceive the fake generated image as a real
image, then the generator has succeeded in its role, and the generator loss will be low.
Once we have formulated the generator loss, we can use it to backpropagate gradients
along the generator model in order to tune its parameters.



In the preceding optimization step of the generator model, we left the discriminator model
parameters unchanged and simply used the discriminator model for a forward pass.

1. Training the discriminator: Next, we will do the opposite, that is, we will retain the
parameters of the generator model and train the discriminator model:

        # train the discriminator model 

        opt_disc.zero_grad() 

        # calculate discriminator loss as average of mistakes(losses) in confusing real images a

        actual_image_loss = adv_loss_func(disc(actual_images), good_img) 

        fake_image_loss = adv_loss_func(disc(gen_images.detach()), bad_img) 

        discriminator_loss = (actual_image_loss + fake_image_loss) / 2 

        # discriminator model optimization 

        discriminator_loss.backward() 

        opt_disc.step() 

        batches_completed = ep * len(dloader) + idx 

        if batches_completed % logging_intv == 0: 

            print(f"epoch number {ep} | batch number {idx} | generator loss = {generator_loss.it

            | discriminator loss = {discriminator_loss.item()}") 

            save_image(gen_images.data[:25], f"images_mnist/{batches_completed}.png", nrow=5, no

Remember that we have a batch of both real and fake images. In order to train the
discriminator model, we will need both. We define the discriminator loss simply to be the
adversarial loss or the binary cross entropy loss as we do for any binary classifier.

We compute the discriminator loss for the batches of both real and fake images, keeping
the target values at 1  for the batch of real images and at 0  for the batch of fake images.
We then use the mean of these two losses as the final discriminator loss, and use it to
backpropagate gradients to tune the discriminator model parameters.

After every few epochs and batches, we log the model's performance results, that is, the
generator loss and the discriminator loss. For the preceding code, we should get an
output similar to the following:

Figure 9. 5 – DCGAN training logs

Notice how the losses are fluctuating a bit; that generally tends to happen during the
training of GAN models due to the adversarial nature of the joint training mechanism.



Besides outputting logs, we also save some network-generated images at regular
intervals. Figure 9. 6 shows the progression of those generated images along the first few
epochs:

Figure 9. 6 – DCGAN epoch-wise image generation

If we compare the results from the later epochs to the original MNIST images in Figure 9.

4, it looks like the DCGAN has learned reasonably well how to generate realistic-looking
fake images of handwritten digits.

That is it. We have learned how to use PyTorch to build a DCGAN model from scratch. The
original DCGAN paper has a few nuanced details, such as the normal initialization of the
layer parameters of the generator and discriminator models, using specific beta1 and
beta2 values for the Adam optimizers, and more. We have omitted some of those details in
the interest of focusing on the main parts of the GAN code. You are encouraged to
incorporate those details and see how that changes the results.

Additionally, we have only used the MNIST  database in our exercise. However, we can use
any image dataset to train the DCGAN model. You are encouraged to try out this model on
other image datasets. One popular image dataset that is used for DCGAN training is the
celebrity faces dataset [9. 5] .

A DCGAN trained with this model can then be used to generate the faces of celebrities
who do not exist. ThisPersonDoesntExist [9. 6] is one such project that generates the
faces of humans that do not exist. Spooky? Yes. That is how powerful DCGANs and GANs,



in general, are. Also, thanks to PyTorch, we can now build our own GANs in a few lines of
code.

In the next and final section of this chapter, we will go beyond DCGANs and take a brief
look at another type of GAN – the pix2pix  model. The pix2pix  model can be used to
generalize the task of style transfer in images and, more generally, the task of image-to-
image translation. We will discuss the architecture of the pix2pix  model, its generator and
discriminator, and use PyTorch to define the generator and discriminator models. We will
also contrast Pix2Pix with a DCGAN in terms of their architecture and implementation.

Using GANs for style transfer

So far, we have only looked at DCGANs in detail. Although there exist hundreds of
different types of GAN models already, and many more are in the making, some of the
well-known GAN models include the following:

GAN
DCGAN
Pix2Pix
CycleGAN
SuperResolutionGAN (SRGAN)
Context encoders
Text-2-Image
LeastSquaresGAN (LSGAN)
SoftmaxGAN
WassersteinGAN

Each of these GAN variants differ by either the application they are catering to, their
underlying model architecture, or due to some tweaks in their optimization strategy, such
as modifying the loss function. For example, SRGANs are used to enhance the resolution
of a low-resolution image. The CycleGAN uses two generators instead of one, and the
generators consist of ResNet-like blocks. The LSGAN uses the mean square error as the
discriminator loss function instead of the usual cross-entropy loss used in most GANs.

It is impossible to discuss all of these GAN variants in a single chapter or even a book.
However, in this section, we will explore one more type of GAN model that relates to both
the DCGAN model discussed in the previous section and the neural style transfer model
discussed in Chapter 8 , Neural Style Transfer .

This special type of GAN generalizes the task of style transfer between images and,
furthermore, provides a general image-to-image translation framework. It is called
Pix2Pix, and we will briefly explore its architecture and the PyTorch implementation of
its generator and discriminator components.

Understanding the pix2pix architecture

In Chapter 8 , Neural Style Transfer, you may recall that a fully trained neural style
transfer model only works on a given pair of images. Pix2Pix is a more general model that
can transfer style between any pair of images once trained successfully. In fact, the model
goes beyond just style transfer and can be used for any image-to-image translation
application, such as background masking, color palette completion, and more.

Essentially, Pix2Pix works like any GAN model. There is a generator and a discriminator
involved. Instead of taking in random noise as input and generating an image, as shown in



Figure 9. 1, the generator in a pix2pix  model takes in a real image as input and tries to
generate a translated version of that image. If the task at hand is style transfer, then the
generator will try to generate a style-transferred image.

Subsequently, the discriminator now looks at a pair of images instead of just a single
image, as was the case in Figure 9. 1. A real image and its equivalent translated image is
fed as input to the discriminator. If the translated image is a genuine one, then the
discriminator is supposed to output 1, and if the translated image is generated by the
generator, then the discriminator is supposed to output 0. Figure 9. 7 shows the
schematic for a pix2pix  model:

Figure 9. 7 – A Pix2Pix model schematic

Figure 9. 7 shows significant similarities to Figure 9. 1, which implies that the underlying
idea is the same as a regular GAN. The only difference is that the real or fake question to
the discriminator is posed on a pair of images as opposed to a single image.

Exploring the Pix2Pix generator

The generator sub-model used in the pix2pix  model is a well-known CNN used for image
segmentation – the UNet. Figure 9. 8 shows the architecture of the UNet, which is used
as a generator for the pix2pix  model:



Figure 9. 8 – The Pix2Pix generator model architecture

Firstly, the name, UNet, comes from the U shape of the network, as is made evident from
the preceding diagram. There are two main components in this network, as follows:

From the upper-left corner to the bottom lies the encoder part of the network, which
encodes the 256x256 RGB input image into a 512-sized feature vector.
From the upper-right corner to the bottom lies the decoder part of the network, which
generates an image from the embedding vector of size 512.

A key property of UNet is the skip connections, that is, the concatenation of features
(along the depth dimension)from the encoder section to the decoder section, as shown by
the dotted arrows in Figure 9.8

FAQ - Why do we have encoder-decoder skip-connections in U-Net?

Using features from the encoder section helps the decoder to better localize the
high-resolution information at each upsampling step.



Essentially, the encoder section is a sequence of down-convolutional blocks, where each
down-convolutional block is itself a sequence of a 2D convolutional layer, an instance
normalization layer, and a leaky ReLU activation. Similarly, the decoder section consists
of a sequence of up-convolutional blocks, where each block is a sequence of a 2D-
transposed convolutional layer, an instance normalization layer, and a ReLU activation
layer.

The final part of this UNet generator architecture is a nearest neighbor-based upsampling
layer, followed by a 2D convolutional layer, and, finally, a tanh  activation. Let's now look
at the PyTorch code for the UNet generator:

1. Here is the equivalent PyTorch code for defining the UNet-based generator
architecture:

class UNetGenerator(nn.Module): 

    def __init__(self, chnls_in=3, chnls_op=3): 

        super(UNetGenerator, self).__init__() 

        self.down_conv_layer_1 = DownConvBlock(chnls_in, 64, norm=False) 

        self.down_conv_layer_2 = DownConvBlock(64, 128) 

        self.down_conv_layer_3 = DownConvBlock(128, 256) 

        self.down_conv_layer_4 = DownConvBlock(256, 512, dropout=0.5) 

        self.down_conv_layer_5 = DownConvBlock(512, 512, dropout=0.5) 

        self.down_conv_layer_6 = DownConvBlock(512, 512, dropout=0.5) 

        self.down_conv_layer_7 = DownConvBlock(512, 512, dropout=0.5) 

        self.down_conv_layer_8 = DownConvBlock(512, 512, norm=False, dropout=0.5) 

        self.up_conv_layer_1 = UpConvBlock(512, 512, dropout=0.5) 

        self.up_conv_layer_2 = UpConvBlock(1024, 512, dropout=0.5) 

        self.up_conv_layer_3 = UpConvBlock(1024, 512, dropout=0.5) 

        self.up_conv_layer_4 = UpConvBlock(1024, 512, dropout=0.5) 

        self.up_conv_layer_5 = UpConvBlock(1024, 256) 

        self.up_conv_layer_6 = UpConvBlock(512, 128) 

        self.up_conv_layer_7 = UpConvBlock(256, 64) 

        self.upsample_layer = nn.Upsample(scale_factor=2) 

        self.zero_pad = nn.ZeroPad2d((1, 0, 1, 0)) 

        self.conv_layer_1 = nn.Conv2d(128, chnls_op, 4, padding=1) 

        self.activation = nn.Tanh()

As you can see, there are 8 down-convolutional layers and 7 up-convolutional layers. The
up-convolutional layers have two inputs, one from the previous up-convolutional layer
output and another from the equivalent down-convolutional layer output, as shown by the
dotted lines in Figure 9. 7.

1. We have used the UpConvBlock  and DownConvBlock  classes to define the layers of the
UNet model. The following is the definition of these blocks, starting with the
UpConvBlock  class:

class UpConvBlock(nn.Module):

    def __init__(self, ip_sz, op_sz, dropout=0.0): 

        super(UpConvBlock, self).__init__() 

        self.layers = [ 

            nn.ConvTranspose2d(ip_sz, op_sz, 4, 2, 1), 

            nn.InstanceNorm2d(op_sz), nn.ReLU(),] 

        if dropout: 

            self.layers += [nn.Dropout(dropout)] 

    def forward(self, x, enc_ip): 

        x = nn.Sequential(*(self.layers))(x) 

        op = torch.cat((x, enc_ip), 1) 

        return op

The transpose convolutional layer in this up-convolutional block consists of a 4x4 kernel
with a stride of 2  steps, which essentially doubles the spatial dimensions of its output
compared to the input.



In this transpose convolution layer, the 4x4 kernel is passed through every other pixel
(due to a stride of 2 ) in the input image. At each pixel, the pixel value is multiplied with
each of the 16 values in the 4x4 kernel.

The overlapping values of the kernel multiplication results across the image are then
summed up, resulting in an output twice the length and twice the breadth of the input
image. Also, in the preceding forward  method, the concatenation operation is performed
after the forward pass is done via the up-convolutional block.

1. Next, here is the PyTorch code for defining the DownConvBlock  class:

class DownConvBlock(nn.Module): 

    def __init__(self, ip_sz, op_sz, norm=True, dropout=0.0): 

        super(DownConvBlock, self).__init__() 

        self.layers = [nn.Conv2d(ip_sz, op_sz, 4, 2, 1)] 

        if norm: 

            self.layers.append(nn.InstanceNorm2d(op_sz)) 

        self.layers += [nn.LeakyReLU(0.2)] 

        if dropout: 

            self.layers += [nn.Dropout(dropout)] 

    def forward(self, x): 

        op = nn.Sequential(*(self.layers))(x) 

        return op

The convolutional layer inside the down-convolutional block has a kernel of size 4x4, a
stride of 2 , and the padding is activated. Because the stride value is 2 , the output of this
layer is half the spatial dimensions of its input.

A leaky ReLU activation is also used for similar reasons as DCGANs – the ability to deal
with negative inputs, which also helps with alleviating the vanishing gradients problem.

So far, we have seen the __init__  method of our UNet-based generator. The forward
method is pretty straightforward hereafter:

    def forward(self, x): 

        enc1 = self.down_conv_layer_1(x) 

        enc2 = self.down_conv_layer_2(enc1) 

        enc3 = self.down_conv_layer_3(enc2) 

        enc4 = self.down_conv_layer_4(enc3) 

        enc5 = self.down_conv_layer_5(enc4) 

        enc6 = self.down_conv_layer_6(enc5) 

        enc7 = self.down_conv_layer_7(enc6) 

        enc8 = self.down_conv_layer_8(enc7) 

        dec1 = self.up_conv_layer_1(enc8, enc7) 

        dec2 = self.up_conv_layer_2(dec1, enc6) 

        dec3 = self.up_conv_layer_3(dec2, enc5) 

        dec4 = self.up_conv_layer_4(dec3, enc4) 

        dec5 = self.up_conv_layer_5(dec4, enc3) 

        dec6 = self.up_conv_layer_6(dec5, enc2) 

        dec7 = self.up_conv_layer_7(dec6, enc1) 

        final = self.upsample_layer(dec7) 

        final = self.zero_pad(final) 

        final = self.conv_layer_1(final) 

        return self.activation(final)

Having discussed the generator part of the pix2pix  model, let's take a look at the
discriminator model as well.

Exploring the Pix2Pix discriminator

The discriminator model, in this case, is also a binary classifier – just as it was for the
DCGAN. The only difference is that this binary classifier takes in two images as inputs.



The two inputs are concatenated along the depth dimension. Figure 9. 9 shows the
discriminator model's high-level architecture:

Figure 9. 9 – The Pix2Pix discriminator model architecture

It is a CNN where the last 3 convolutional layers are followed by a normalization layer as
well as a leaky ReLU activation. The PyTorch code to define this discriminator model will
be as follows:

class Pix2PixDiscriminator(nn.Module): 

    def __init__(self, chnls_in=3): 

        super(Pix2PixDiscriminator, self).__init__() 

        def disc_conv_block(chnls_in, chnls_op, norm=1): 

            layers = [nn.Conv2d(chnls_in, chnls_op, 4, stride=2, padding=1)] 

            if normalization:

                layers.append(nn.InstanceNorm2d(chnls_op)) 

            layers.append(nn.LeakyReLU(0.2, inplace=True)) 

            return layers 

        self.lyr1 = disc_conv_block(chnls_in * 2, 64, norm=0) 

        self.lyr2 = disc_conv_block(64, 128) 

        self.lyr3 = disc_conv_block(128, 256) 

        self.lyr4 = disc_conv_block(256, 512)

As you can see, the 4  convolutional layers subsequently double the depth of the spatial
representation at each step. Layers 2 , 3 , and 4  have added normalization layers after the
convolutional layer, and a leaky ReLU activation with a negative slope of 20% is applied at
the end of every convolutional block. Finally, here is the forward  method of the
discriminator model class in PyTorch:

    def forward(self, real_image, translated_image): 

        ip = torch.cat((real_image, translated_image), 1) 

        op = self.lyr1(ip) 

        op = self.lyr2(op) 

        op = self.lyr3(op) 

        op = self.lyr4(op) 

        op = nn.ZeroPad2d((1, 0, 1, 0))(op) 

        op = nn.Conv2d(512, 1, 4, padding=1)(op) 

        return op



First, the input images are concatenated and passed through the four convolutional blocks
and finally led into a single binary output that tells us the probability of the pair of images
being genuine or fake (that is, generated by the generator model). In this way, the pix2pix
model is trained at runtime so that the generator of the pix2pix  model can take in any
image as input and apply the image translation function that it has learned during
training.

The pix2pix  model will be considered successful if the generated fake-translated image is
difficult to tell apart from a genuine translated version of the original image.

This concludes our exploration of the pix2pix  model. In principle, the overall model
schematic for Pix2Pix is quite similar to that of the DCGAN model. The discriminator
network for both of these models is a CNN-based binary classifier. The generator network
for the pix2pix  model is a slightly more complex architecture inspired by the UNet image
segmentation model.

Overall, we have been able to both successfully define the generator and discriminator
models for DCGAN and Pix2Pix using PyTorch, and understand the inner workings of
these two GAN variants.

After finishing this section, you should be able to get started with writing PyTorch code
for the many other GAN variants out there. Building and training various GAN models
using PyTorch can be a good learning experience and certainly is a fun exercise. We
encourage you to use the information from this chapter to work on your own GAN projects
using PyTorch.

Summary

GANs have been an active area of research and development in recent years, ever since
their inception in 2014. This chapter was an exploration of the concepts behind GANs,
including the components of GANs, namely, the generator and the discriminator. We
discussed the architectures of each of these components and the overall schematic of a
GAN model.

In the next chapter, we will go a step further in our pursuit of generative models. We will
explore how to generate image from text using cutting-edge deep learning techniques.
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Machine learning is usually classified into three different paradigms: supervised

learning, unsupervised learning, and reinforcement learning (RL). Supervised
learning requires labeled data and has been the most popularly used machine learning
paradigm so far. However, applications based on unsupervised learning, which does not
require labels, have been steadily on the rise, especially in the form of generative models.

An RL, on the other hand, is a different branch of machine learning that is considered to
be the closest we have reached in terms of emulating how humans learn. It is an area of
active research and development and is in its early stages, with some promising results. A
prominent example is the famous AlphaGo model, built by Google's DeepMind, that
defeated the world's best Go player.

In supervised learning, we usually feed the model with atomic input-output data pairs and
hope for the model to learn the output as a function of the input. In RL, we are not keen
on learning such individual input to individual output functions. Instead, we are interested
in learning a strategy (or policy) that enables us to take a sequence of steps (or actions),
starting from the input (state), in order to obtain the final output or achieve the final goal.

Looking at a photo and deciding whether it's a cat or a dog is an atomic input-output
learning task that can be solved through supervised learning. However, looking at a chess
board and deciding the next move with the aim of winning the game requires strategy,
and we need RL for complex tasks like these.

In the previous chapters, we came across examples of supervised learning such as
building a classifier to classify handwritten digits using the MNIST dataset. We also
explored unsupervised learning while building a text generation model using an unlabeled
text corpus.

In this chapter, we will uncover some of the basic concepts of RL and deep

reinforcement learning (DRL). We will then focus on a specific and popular type of
DRL model – the deep Q-learning Network (DQN) model. Using PyTorch, we will build
a DRL application. We will train a DQN model to learn how to play the game of Pong
against a computer opponent (bot).

By the end of this chapter, you will have all the necessary context to start working on your
own DRL project in PyTorch. Additionally, you will have hands-on experience of building a
DQN model for a real-life problem. The skills you'll have gained in this chapter will be
useful for working on other such RL problems.

This chapter is broken down into the following topics:

https://packt.link/EarlyAccessCommunity


Reviewing reinforcement learning concepts
Discussing Q-learning
Understanding deep Q-learning
Building a DQN model in PyTorch

Reviewing reinforcement learning concepts

In a way, RL can be defined as learning from mistakes. Instead of getting the feedback for
every data instance, as is the case with supervised learning, the feedback is received after
a sequence of actions. The following diagram shows the high-level schematic of an RL
system:

Figure 11. 1 – Reinforcement learning schematic

In an RL setting, we usually have an agent, which does the learning. The agent learns to
make decisions and take actions according to these decisions. The agent operates within
a provided environment. This environment can be thought of as a confined world where
the agent lives, takes actions, and learns from its actions. An action here is simply the
implementation of the decision the agent makes based on what it has learned.

We mentioned earlier that unlike supervised learning, RL does not have an output for
each and every input; that is, the agent does not necessarily receive a feedback for each
and every action. Instead, the agent works in states. Suppose it starts at an initial state,
S0. It then takes an action, say a0. This action transitions the state of the agent from S0 to
S1, after which the agent takes another action, a1, and the cycle goes on.



Occasionally, the agent receives rewards based on its state. The sequence of states and
actions that the agent traverses is also known as a trajectory. Let's say the agent
received a reward at state S2. In that case, the trajectory that resulted in this reward
would be S0, a0, S1, a1, S2.

Note

The rewards could either be positive or negative.

Based on the rewards, the agent learns to adjust its behavior so that it takes actions in a
way that maximizes the long-term rewards. This is the essence of RL. The agent learns a
strategy regarding how to act optimally (that is, to maximize the reward) based on the
given state and reward.

This learned strategy, which is basically actions expressed as a function of states and
rewards, is called the policy of the agent. The ultimate goal of RL is to compute a policy
that enables the agent to always receive the maximum reward from the given situation the
agent is placed in.

Video games are one of the best examples to demonstrate RL. Let's use the video game
Pong as an example, which is a virtual version of table tennis. The following is a snapshot
of this game:



Figure 11. 2 – Pong video game

Consider that the player to the right is the agent, which is represented by a short vertical
line. Notice that there is a well-defined environment here. The environment consists of the
playing area, which is denoted by the brown pixels. The environment also consists of a
ball, which is denoted by a white pixel. As well as this, the environment consists of the
boundaries of the playing area, denoted by the gray stripes and edges that the ball may
bounce off. Finally, and most importantly, the environment includes an opponent, which
looks like the agent but is placed on the left-hand side, opposite the agent.

Usually, in an RL setting, the agent at any given state has a finite set of possible actions,
referred to as a discrete action space (as opposed to a continuous action space). In this
example, the agent has two possible actions at all states – move up or move down, but
with two exceptions. First, it can only move down when it is at the top-most position
(state), and second, it can only move up when it is at the bottom-most position (state).



The concept of reward in this case can be directly mapped to what happens in an actual
table tennis game. If you miss the ball, your opponent gains a point. Whoever scores 21
points first wins the game and receives a positive reward. Losing a game means negative
rewards. Scoring a point or losing a point also results in smaller intermediate positive and
negative rewards, respectively. A sequence of play starting from score 0-0 and leading to
either of the players scoring 21 points is called an episode.

Training our agent for a Pong game using RL is equivalent to training someone to play
table tennis from scratch. Training results in a policy that the agent follows while playing
the game. In any given situation – which includes the position of the ball, the position of
the opponent, the scoreboard, as well as the previous reward – a successfully trained
agent moves up or down to maximize its chances of winning the game.

So far, we have discussed the basic concepts behind RL by providing an example. In doing
so, we have repeatedly mentioned terms such as strategy, policy, and learning. But how
does the agent actually learn the policy? The answer is through an RL model, which works
based on a pre-defined algorithm. Next, we will explore the different kinds of RL
algorithms.

Types of reinforcement learning algorithms

In this section, we will look at the types of RL algorithms, as per the literature. We will
then explore some of the subtypes within these types. Broadly speaking, RL algorithms
can be categorized as either of the following:

Model-based

Model-free

Let's look at these one by one.

Model-based

As the name suggests, in model-based algorithms, the agent knows about the model of the
environment. The model here refers to the mathematical formulation of a function that
can be used to estimate rewards and how the states transition within the environment.
Because the agent has some idea about the environment, it helps reduce the sample space
to choose the next action from. This helps with the efficiency of the learning process.

However, in reality, a modeled environment is not directly available most of the time. If
we, nonetheless, want to use the model-based approach, we need to have the agent learn
the environment model with its own experience. In such cases, the agent is highly likely to
learn a biased representation of the model and perform poorly in the real environment.
For this reason, model-based approaches are less frequently used for implementing RL
systems. We will not be discussing models based on this approach in detail in this book,
but here are some examples:

Model-Based DRL with Model-Free Fine-Tuning  (MBMF).
Model-Based Value Estimation (MBVE) for efficient Model-Free RL.
Imagination-Augmented Agents (I2A) for DRL.
AlphaZero, the famous AI bot that defeated Chess and Go champions.

Now, let's look at the other set of RL algorithms that work with a different philosophy.

Model-free



The model-free approach works without any model of the environment and is currently
more popularly used for RL research and development. There are primarily two ways of
training the agent in a model-free RL setting:

Policy optimization

Q-learning

Policy optimization

In this method, we formulate the policy in the form of a function of an action, given the
current state, as demonstrated in the following equation:

– Equation 11.1

Here, β represents the internal parameters of this function, which is updated to optimize
the policy function via gradient ascent. The objective function is defined using the policy
function and the rewards. An approximation of the objective function may also be used in
some cases for the optimization process. Furthermore, in some cases, an approximation of
the policy function could be used instead of the actual policy function for the optimization
process.

Usually, the optimizations that are performed under this approach are on-policy, which
means that the parameters are updated based on the data gathered using the latest policy
version. Some examples of policy optimization-based RL algorithms are as follows:

Policy gradient: This is the most basic policy optimization method where we directly
optimize the policy function using gradient ascent. The policy function outputs the
probabilities of different actions to be taken next, at each time step.
Actor-critic: Because of the on-policy nature of optimization under the policy
gradient algorithm, every iteration of the algorithm needs the policy to be updated.
This takes a lot of time. The actor-critic method introduces the use of a value function,
as well as a policy function. The actor models the policy function and the critic models
the value function.

By using a critic, the policy update process becomes faster. We will discuss the value
function in more detail in the next section. However, we will not go into the mathematical
details of the actor-critic method in this book.

Trust region policy optimization (TRPO): Like the policy gradient method, TRPO
consists of an on-policy optimization approach. In the policy-gradient approach, we
use the gradient for updating the policy function parameters, β. Since the gradient is
a first-order derivative, it can be noisy for sharp curvatures in the function. This may
lead us to making large policy changes that may destabilize the learning trajectory of
the agent.

To avoid that, TRPO proposes a trust region. It defines an upper limit on how much the
policy may change in a given update step. This ensures the stability of the optimization



process.

Proximal policy optimization (PPO): Similar to TRPO, PPO aims to stabilize the
optimization process. During gradient ascent, an update is performed per data sample
in the policy gradient approach. PPO, however, uses a surrogate objective function,
which facilitates updates over batches of data samples. This results in estimating
gradients more conservatively, thereby improving the chances of the gradient ascent
algorithm converging.

Policy optimization functions directly work on optimizing the policy and hence are
extremely intuitive algorithms. However, due to the on-policy nature of most of these
algorithms, data needs to be resampled at each step after the policy is updated. This can
be a limiting factor in solving RL problems. Next, we will discuss the other kind of model-
free algorithm that is more sample-efficient, known as Q-learning.

Q-learning

Contrary to policy optimization algorithms, Q-learning relies on a value function instead
of a policy function. From here on, this chapter will focus on Q-learning. We will explore
the fundamentals of Q-learning in detail in the next section.

Discussing Q-learning

The key difference between policy optimization and Q-learning is the fact that in the
latter, we are not directly optimizing the policy. Instead, we optimize a value function.
What is a value function? We have already learned that RL is all about an agent learning
to gain the maximum overall rewards while traversing a trajectory of states and actions. A
value function is a function of a given state the agent is currently at, and this function
outputs the expected sum of rewards the agent will receive by the end of the current
episode.

In Q-learning, we optimize a specific type of value function, known as the action-value

function, which depends on both the current state and the action. At a given state, S, the
action-value function determines the long-term rewards (rewards until the end of the
episode) the agent will receive for taking action a. This function is usually expressed as
Q(S, a), and hence is also called the Q-function. The action-value is also referred to as the
Q-value.

The Q-values for every (state, action) pair can be stored in a table where the two
dimensions are state and action. For example, if there are four possible states, S1, S2, S3,
and S4, and two possible actions, a1 and a2, then the eight Q-values will be stored in a
4x2 table. The goal of Q-learning, therefore, is to create this table of Q-values. Once the
table is available, the agent can look up the Q-values for all possible actions from the
given state and take the action with the maximum Q-value. However, the question is,
where do we get the Q-values from? The answer lies in the Bellman equation, which is
mathematically expressed as follows:

– Equation 11.2



The Bellman equation is a recursive way of calculating Q-values. R in this equation is the
reward received by taking action at at state St, while γ (gamma) is the discount factor,
which is a scalar value between 0 and 1. Basically, this equation states that the Q-value
for the current state, St, and action, at, is equal to the reward, R, received by taking
action at at state St, plus the Q-value resulting from the most optimal action, at+1, taken
from the next state, St+1, multiplied by a discount factor. The discount factor defines how
much weightage is to be given to the immediate reward versus the long-term future
rewards.

Now that we have defined most of the underlying concepts of Q-learning, let's walk
through an example to demonstrate how Q-learning exactly works. The following diagram
shows an environment that consists of five possible states:

Figure 11. 3 – Q-learning example environment

There are two different possible actions – moving up (a1) or down (a2). There are
different rewards at different states ranging from +2 at state S4 to -1 at state S0. Every



episode in this environment starts from state S2 and ends at either S0 or S4. Because
there are five states and two possible actions, the Q-values can be stored in a 5x2 table.
The following code snippet shows how rewards and Q-values can be written in Python:

rwrds = [-1, 0, 0, 0, 2] 

Qvals = [[0.0, 0.0], 

         [0.0, 0.0], 

         [0.0, 0.0], 

         [0.0, 0.0], 

         [0.0, 0.0]]

We initialize all the Q-values to zero. Also, because there are two specific end states, we
need to specify those in the form of a list, as shown here:

end_states = [1, 0, 0, 0, 1]

This basically indicates that states S0 and S4 are end states. There is one final piece we
need to look at before we can run the complete Q-learning loop. At each step of Q-
learning, the agent has two options with regards to taking the next action:

Take the action that has the highest Q-value.
Randomly choose the next action.

Why would the agent choose an action randomly?

Remember that in Chapter 7 , Music and Text Generation with PyTorch, in the Text

generation section, we discussed how greedy search or beam search results in repetitive
results, and hence introducing randomness helps in producing better results. Similarly , if
the agent always chooses the next action based on Q-values, then it might get stuck
choosing an action repeatedly that gives an immediate high reward in the short term.
Hence, taking actions randomly once in a while will help the agent get out of such sub-
optimal conditions.

Now that we've established that the agent has two possible ways of taking an action at
each step, we need to decide which way the agent goes. This is where the epsilon-

greedy-action mechanism comes into play. The following diagram shows how it works:



Figure 11. 4 – Epsilon-greedy-action mechanism

Under this mechanism, at each episode, an epsilon value is pre-decided, which is a scalar
value between 0  and 1 . In a given episode, for taking each next action, the agent
generates a random number between 0  to 1 . If the generated number is less than the
pre-defined epsilon value, the agent chooses the next action randomly from the available
set of next actions. Otherwise, the Q-values for each of the next possible actions are
retrieved from the Q-value table, and the action with the highest Q-value is chosen. The
Python code for the epsilon-greedy-action mechanism is as follows:

def eps_greedy_action_mechanism(eps, S): 

  rnd = np.random.uniform() 

  if rnd < eps: 

    return np.random.randint(0, 2) 

  else: 

    return np.argmax(Qvals[S])

Typically, we start with an epsilon value of 1  at the first episode and then linearly
decrease it as the episodes progress. The idea here is that we want the agent to explore
different options initially. However, as the learning process progresses, the agent is less
susceptible to getting stuck collecting short-term rewards and hence it can better exploit
the Q-values table.

We are now in a position to write the Python code for the main Q-learning loop, which will
look as follows:

n_epsds = 100 

eps = 1 

gamma = 0.9 

for e in range(n_epsds): 

  S_initial = 2 # start with state S2 

  S = S_initial 

  while not end_states[S]: 

    a = eps_greedy_action_mechanism(eps, S) 

    R, S_next = take_action(S, a) 

    if end_states[S_next]: 

      Qvals[S][a] = R 

    else: 

      Qvals[S][a] = R + gamma * max(Qvals[S_next]) 

    S = S_next 

  eps = eps - 1/n_epsds

First, we define that the agent shall be trained for 100  episodes. We begin with an epsilon
value of 1  and we define the discounting factor (gamma) as 0.9 . Next, we run the Q-
learning loop, which loops over the number of episodes. In each iteration of this loop, we
run through an entire episode. Within the episode, we first initialize the state of the agent
to S2 .

Thereon, we run another internal loop, which only breaks if the agent reaches an end
state. Within this internal loop, we decide on the next action for the agent using the
epsilon-greedy-action mechanism. The agent then takes the action, which transitions the
agent to a new state and may possibly yield a reward. The implementation for the
take_action  function is as follows:

def take_action(S, a): 

  if a == 0: # move up 

    S_next = S - 1 

  else: 

    S_next = S + 1 

  return rwrds[S_next], S_next



Once we obtain the reward and the next state, we update the Q-value for the current
state-action pair using equation 11.2 . The next state now becomes the current state and
the process repeats. At the end of each episode, the epsilon value is reduced linearly.
Once the entire Q-learning loop is over, we obtain a Q-values table. This table is
essentially all that the agent needs to operate in this environment in order to gain the
maximum long-term rewards.

Ideally, a well-trained agent for this example would always move downward to receive the
maximum reward of +2 at S4, and would avoid going toward S0, which contains a
negative reward of -1.

This completes our discussion on Q-learning. The preceding code should help you get
started with Q-learning in simple environments such as the one provided here. For more
complex and realistic environments, such as video games, this approach will not work.
Why?

We have noticed that the essence of Q-learning lies in creating the Q-values table. In our
example, we only had 5 states and 2 actions, and therefore the table was of size 10, which
is manageable. But in video games such as Pong, there are far too many possible states.
This explodes the Q-values table's size, which makes our Q-learning algorithm extremely
memory intensive and impractical to run.

Thankfully, there is a solution where we can still use the concept of Q-learning without
having our machines run out of memory. This solution combines the worlds of Q-learning
and deep neural networks and provides the extremely popular RL algorithm known as
DQN. In the next section, we will discuss the basics of DQN and some of its novel
characteristics.

Understanding deep Q-learning

Instead of creating a Q-values table, DQN uses a deep neural network (DNN) that
outputs a Q-value for a given state-action pair. DQN is used with complex environments
such as video games, where there are far too many states for them to be managed in a Q-
values table. The current image frame of the video game is used to represent the current
state and is fed as input to the underlying DNN model, together with the current action.

The DNN outputs a scalar Q-value for each such input. In practice, instead of just passing
the current image frame, N number of neighboring image frames in a given time window
are passed as input to the model.

We are using a DNN to solve an RL problem. This has an inherent concern. While working
with DNNs, we have always worked with independent and identically distributed (iid)
data samples. However, in RL, every current output impacts the next input. For example,
in the case of Q-learning, the Bellman equation itself suggests that the Q-value is
dependent on another Q-value; that is, the Q-value of the next state-action pair impacts
the Q-value of the current-state pair.

This implies that we are working with a constantly moving target and there is a high
correlation between the target and the input. DQN addresses these issues with two novel
features:

Using two separate DNNs
Experience replay buffer



Let's look at these in more detail.

Using two separate DNNs

Let's rewrite the Bellman equation for DQNs:

– Equation 11.3

This equation is mostly the same as for Q-learning except for the introduction of a new
term,

(theta).



represents the weights of the DNN that the DQN model uses to get Q-values. But
something is odd with this equation. Notice that



is placed on both the left hand-side and the right-hand side of the equation. This means
that at every step, we are using the same neural network for getting the Q-values of the
current state-action, pair as well as the next state-action pair. This means that we are
chasing a non-stationary target because every step,



, will be updated, which will change both the left-hand side as well as the right-hand side
of the equation for the next step, causing instability in the learning process.

This can be more clearly seen by looking at the loss function, which the DNN will be
trying to minimize using gradient descent. The loss function is as follows:

– Equation 11.4

Keeping R (reward) aside for a moment, having the exact same network producing Q-
values for current and next state-action pairs will lead to volatility in the loss function as
both terms will be constantly changing. To address this issue, DQN uses two separate
networks – a main DNN and a target DNN. Both DNNs have the exact same architecture.



The main DNN is used for computing the Q-values of the current state-action pair, while
the target DNN is used for computing the Q-values of the next (or target) state-action
pair. However, although the weights of the main DNN are updated at every learning step,
the weights of the target DNN are frozen. After every K gradient descent iterations, the
weights of the main network are copied to the target network. This mechanism keeps the
training procedure relatively stable. The weights-copying mechanism ensures accurate
predictions from the target network.

Experience replay buffer

Because the DNN expects iid data as input, we simply cache the last X number of steps
(frames of the video game) into a buffer memory and then randomly sample batches of
data from the buffer. These batches are then fed as inputs to the DNN. Because the
batches consist of randomly sampled data, the distribution looks similar to that of iid data
samples. This helps stabilize the DNN training process.

Note

Without the buffer trick, the DNN would receive correlated data, which would
result in poor optimization results.

These two tricks have proven significant in contributing to the success of DQNs. Now that
we have a basic understanding of how DQN models work and their novel characteristics,
let's move on to the final section of this chapter, where we will implement our own DQN
model. Using PyTorch, we will build a CNN-based DQN model that will learn to play the
Atari video game known as Pong and potentially learn to win the game against the
computer opponent.

Building a DQN model in PyTorch

We discussed the theory behind DQNs in the previous section. In this section, we will take
a hands-on approach. Using PyTorch, we will build a CNN-based DQN model that will
train an agent to play the video game known as Pong. The goal of this exercise is to
demonstrate how to develop DRL applications using PyTorch. Let's get straight into the
exercise.

Initializing the main and target CNN models

In this exercise, we will only show the important parts of the code for demonstration
purposes. In order to access the full code, visit our github repository [11.1] . Follow these
steps:

1. First, we need to import the necessary libraries:

# general imports 

import cv2 

import math 

import numpy as np 

import random 

# reinforcement learning related imports 

import re 

import atari_py as ap 

from collections import deque

from gym import make, ObservationWrapper, Wrapper 

from gym.spaces import Box 

# pytorch imports 

import torch 



import torch.nn as nn 

from torch import save 

from torch.optim import Adam

In this exercise, besides the usual Python- and PyTorch-related imports, we are also using
a Python library called gym . It is a Python library produced by OpenAI [11.2] that provides
a set of tools for building DRL applications. Essentially, importing gym  does away with the
need of writing all the scaffolding code for the internals of an RL system. It also consists
of built-in environments, including one for the video game Pong, which we will use in this
exercise.

1. After importing the libraries, we must define the CNN architecture for the DQN
model. This CNN model essentially takes in the current state input and outputs the
probability distribution over all possible actions. The action with the highest
probability gets chosen as the next action by the agent. Instead of using a regression
model to predict the Q-values for each state-action pair, we cleverly turn this into a
classification problem.

The Q-value regression model will have to be run separately for all possible actions, and
we will choose the action with the highest predicted Q-value. But using this classification
model combines the task of calculating Q-values and predicting the best next action into
one:

class ConvDQN(nn.Module): 

    def __init__(self, ip_sz, tot_num_acts): 

        super(ConvDQN, self).__init__() 

        self._ip_sz = ip_sz 

        self._tot_num_acts = tot_num_acts 

        self.cnv1 = nn.Conv2d(ip_sz[0], 32, kernel_size=8, stride=4) 

        self.rl = nn.ReLU() 

        self.cnv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2) 

        self.cnv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1) 

        self.fc1 = nn.Linear(self.feat_sz, 512) 

        self.fc2 = nn.Linear(512, tot_num_acts)

As we can see, the model consists of three convolutional layers – cnv1 , cnv2 , and cnv3  –
with ReLU activations in-between them, followed by two fully connected layers. Now, let's
look at what a forward pass through this model entails:

    def forward(self, x): 

        op = self.cnv1(x) 

        op = self.rl(op) 

        op = self.cnv2(op) 

        op = self.rl(op) 

        op = self.cnv3(op) 

        op = self.rl(op).view(x.size()[0], -1) 

        op = self.fc1(op) 

        op = self.rl(op) 

        op = self.fc2(op) 

        return op

The forward  method simply demonstrates a forward pass by the model, where the input is
passed through the convolutional layers, flattened, and finally fed to the fully connected
layers. Finally, let's look at the other model methods:

    @property 

    def feat_sz(self): 

        x = torch.zeros(1, *self._ip_sz) 

        x = self.cnv1(x) 

        x = self.rl(x) 

        x = self.cnv2(x) 

        x = self.rl(x) 



        x = self.cnv3(x) 

        x = self.rl(x) 

        return x.view(1, -1).size(1) 

    def perf_action(self, stt, eps, dvc): 

        if random.random() > eps: 

            stt=torch.from_numpy(np.float32(stt)).unsqueeze(0).to(dvc) 

            q_val = self.forward(stt) 

            act = q_val.max(1)[1].item() 

        else: 

            act = random.randrange(self._tot_num_acts) 

        return act

In the preceding code snippet, the feat_size  method is simply meant to calculate the size
of the feature vector after flattening the last convolutional layer output. Finally, the
perf_action  method is the same as the take_action  method we discussed previously in the
Discussing Q-learning section.

1. In this step, we define a function that instantiates the main neural network and the
target neural network:

def models_init(env, dvc): 

    mdl = ConvDQN(env.observation_space.shape, env.action_space.n).to(dvc) 

    tgt_mdl = ConvDQN(env.observation_space.shape, env.action_space.n).to(dvc) 

    return mdl, tgt_mdl

These two models are instances of the same class and hence share the same architecture.
However, they are two separate instances and hence will evolve differently with different
sets of weights.

Defining the experience replay buffer

As we discussed in the Understanding deep Q-learning section, the experience replay
buffer is a significant feature of DQNs. With the help of this buffer, we can store several
thousand transitions (frames) of a game and then randomly sample those video frames to
train the CNN model. The following is the code for defining the replay buffer:

class RepBfr: 

    def __init__(self, cap_max): 

        self._bfr = deque(maxlen=cap_max) 

    def push(self, st, act, rwd, nxt_st, fin): 

        self._bfr.append((st, act, rwd, nxt_st, fin)) 

    def smpl(self, bch_sz): 

        idxs = np.random.choice(len(self._bfr), bch_sz, False) 

        bch = zip(*[self._bfr[i] for i in idxs]) 

        st, act, rwd, nxt_st, fin = bch 

        return (np.array(st), np.array(act), np.array(rwd,      dtype=np.float32),np.array(nxt_s

    def __len__(self): 

        return len(self._bfr)

Here, cap_max  is the defined buffer size; that is, the number of video game state
transitions that shall be stored in the buffer. The smpl  method is used during the CNN
training loop to sample the stored transitions and generate batches of training data.

Setting up the environment

So far, we have mostly focused on the neural network side of DQNs. In this section, we
will focus on building one of the foundational aspects in an RL problem – the environment.
Follow these steps:

1. First, we must define some video game environment initialization-related functions:



def gym_to_atari_format(gym_env): 

    ... 

def check_atari_env(env): 

    ...

Using the gym  library, we have access to a pre-built Pong video game environment. But
here, we will augment the environment in a series of steps, which will include
downsampling the video game image frames, pushing image frames to the experience
replay buffer, converting images into PyTorch tensors, and so on.

1. The following are the defined classes that implement each of the environment control
steps:

class CCtrl(Wrapper): 

    ... 

class FrmDwSmpl(ObservationWrapper): 

    ... 

class MaxNSkpEnv(Wrapper): 

    ... 

class FrRstEnv(Wrapper): 

    ... 

class FrmBfr(ObservationWrapper): 

    ... 

class Img2Trch(ObservationWrapper): 

    ... 

class NormFlts(ObservationWrapper): 

    ...        

These classes will now be used for initializing and augmenting the video game
environment.

1. Once the environment-related classes have been defined, we must define a final
method that takes in the raw Pong video game environment as input and augments
the environment, as follows:

def wrap_env(env_ip): 

    env = make(env_ip) 

    is_atari = check_atari_env(env_ip) 

    env = CCtrl(env, is_atari) 

    env = MaxNSkpEnv(env, is_atari) 

    try: 

        env_acts = env.unwrapped.get_action_meanings() 

        if "FIRE" in env_acts: 

            env = FrRstEnv(env) 

    except AttributeError: 

        pass 

    env = FrmDwSmpl(env) 

    env = Img2Trch(env) 

    env = FrmBfr(env, 4) 

    env = NormFlts(env) 

    return env

Some of the code in this step have been omitted as our focus is on the PyTorch aspect of
this exercise. Please refer to this book's GitHub repository [11.3] for the full code.

Defining the CNN optimization function

In this section, we will define the loss function for training our DRL model, as well as
define what needs to be done at the end of each model training iteration. Follow these
steps:



1. We initialized our main and target CNN models in step 2 of the Initializing the main

and target CNN models section. Now that we have defined the model architecture, we
shall define the loss  function, which the model will be trained to minimize:

def calc_temp_diff_loss(mdl, tgt_mdl, bch, gm, dvc): 

    st, act, rwd, nxt_st, fin = bch        st = torch.from_numpy(np.float32(st)).to(dvc) 

    nxt_st =      torch.from_numpy(np.float32(nxt_st)).to(dvc) 

    act = torch.from_numpy(act).to(dvc) 

    rwd = torch.from_numpy(rwd).to(dvc) 

    fin = torch.from_numpy(fin).to(dvc)     q_vals = mdl(st) 

    nxt_q_vals = tgt_mdl(nxt_st)        q_val = q_vals.gather(1, act.unsqueeze(-1)).squeeze(-1) 

    nxt_q_val = nxt_q_vals.max(1)[0] 

    exp_q_val = rwd + gm * nxt_q_val * (1 - fin)        loss = (q_val -exp_q_val.data.to(dvc)).p

    loss.backward()

The loss function defined here is derived from equation 11.4. . This loss is known as the
time/temporal difference loss and is one of the foundational concepts of DQNs.

1. Now that the neural network architecture and loss function are in place, we shall
define the model updation  function, which is called at every iteration of neural
network training:

def upd_grph(mdl, tgt_mdl, opt, rpl_bfr, dvc, log): 

    if len(rpl_bfr) > INIT_LEARN: 

        if not log.idx % TGT_UPD_FRQ: 

            tgt_mdl.load_state_dict(mdl.state_dict()) 

        opt.zero_grad() 

        bch = rpl_bfr.smpl(B_S) 

        calc_temp_diff_loss(mdl, tgt_mdl, bch, G, dvc) 

        opt.step()

This function samples a batch of data from the experience replay buffer, computes the
time difference loss on this batch of data, and also copies the weights of the main neural
network to the target neural network once every TGT_UPD_FRQ  iterations. TGT_UPD_FRQ  will be
assigned a value later.

Managing and running episodes

Now, let's learn how to define the epsilon value:

1. First, we will define a function that will update the epsilon value after each episode:

def upd_eps(epd): 

    last_eps = EPS_FINL 

    first_eps = EPS_STRT 

    eps_decay = EPS_DECAY 

    eps = last_eps + (first_eps - last_eps) * math.exp(-1 * ((epd + 1) / eps_decay)) 

    return eps

This function is the same as the epsilon update step in our Q-learning loop, as discussed in
the Discussing Q-learning section. The goal of this function is to linearly reduce the
epsilon value per episode.

1. The next function is to define what happens at the end of an episode. If the overall
reward that's scored in the current episode is the best we've achieved so far, we save
the CNN model weights and print the reward value:

def fin_epsd(mdl, env, log, epd_rwd, epd, eps): 

    bst_so_far = log.upd_rwds(epd_rwd) 

    if bst_so_far: 

        print(f"checkpointing current model weights. highest running_average_reward of\ 



{round(log.bst_avg, 3)} achieved!") 

        save(mdl.state_dict(), f"{env}.dat") 

    print(f"episode_num {epd}, curr_reward: {epd_rwd},       best_reward: {log.bst_rwd},\running_

At the end of each episode, we also log the episode number, the reward at the end of the
current episode, a running average of reward values across the past few episodes, and
finally, the current epsilon value.

1. We have finally reached one of the most crucial function definitions of this exercise.
Here, we must specify the DQN loop. This is where we define the steps that shall be
executed in an episode:

def run_epsd(env, mdl, tgt_mdl, opt, rpl_bfr, dvc, log, epd): 

    epd_rwd = 0.0 

    st = env.reset() 

    while True: 

        eps = upd_eps(log.idx) 

        act = mdl.perf_action(st, eps, dvc) 

        env.render() 

        nxt_st, rwd, fin, _ = env.step(act) 

        rpl_bfr.push(st, act, rwd, nxt_st, fin) 

        st = nxt_st 

        epd_rwd += rwd 

        log.upd_idx() 

        upd_grph(mdl, tgt_mdl, opt, rpl_bfr, dvc, log) 

        if fin: 

            fin_epsd(mdl, ENV, log, epd_rwd, epd, eps) 

            break

The rewards and states are reset at the beginning of the episode. Then, we run an endless
loop that only breaks if the agent reaches one of the end states. Within this loop, in each
iteration, the following steps are executed:

i) First, the epsilon value is modified as per the linear depreciation scheme.

ii) The next action is predicted by the main CNN model. This action is executed, resulting
in the next state and a reward. This state transition is recorded in the experience replay
buffer.

iii) The next state now becomes the current state and we calculate the time difference
loss, which is used to update the main CNN model while keeping the target CNN model
frozen.

iv) If the new current state is an end state, then we break the loop (that is, end the
episode) and log the results for this episode.

1. We have mentioned logging results throughout the training process. In order to store
the various metrics around rewards and model performance, we must define a
training metadata class, which will consist of various metrics as attributes:

class TrMetadata: 

    def __init__(self): 

        self._avg = 0.0 

        self._bst_rwd = -float("inf") 

        self._bst_avg = -float("inf") 

        self._rwds = [] 

        self._avg_rng = 100 

        self._idx = 0

We will use these metrics to visualize model performance later in this exercise, once
we've trained the model.



1. We store the model metric attributes in the previous step as private members and
publicly expose their corresponding getter functions instead:

    @property 

    def bst_rwd(self): 

        ... 

    @property 

    def bst_avg(self): 

        ... 

    @property 

    def avg(self): 

        ... 

    @property 

    def idx(self): 

        ... 

    ...

The idx  attribute is critical for deciding when to copy the weights from the main CNN to
the target CNN, while the avg  attribute is useful for computing the running average of
rewards that have been received in the past few episodes.

Training the DQN model to learn Pong

Now, we have all the necessary ingredients to start training the DQN model. Let's get
started:

1. The following is a training wrapper function that will do everything we need it to do:

def train(env, mdl, tgt_mdl, opt, rpl_bfr, dvc): 

    log = TrMetadata() 

    for epd in range(N_EPDS):

        run_epsd(env, mdl, tgt_mdl, opt, rpl_bfr, dvc, log, epd)

Essentially, we initialize a logger and just run the DQN training system for a predefined
number of episodes.

1. Before we actually run the training loop, we need to define the hyperparameter
values, which are as follows:

i) The batch size for each iteration of gradient descent to tune the CNN model

ii) The environment, which in this case is the Pong video game

iii) The epsilon value for the first episode

iv) The epsilon value for the last episode

v) The rate of depreciation for the epsilon value

vi) Gamma; that is, the discounting factor

vii) The initial number of iterations that are reserved just for pushing data to the replay
buffer

viii) The learning rate

ix) The size or capacity of the experience replay buffer

x) The total number of episodes to train the agent for



xi) The number of iterations after which we copy the weights from the main CNN to the
target CNN

We can instantiate all of these hyperparameters in the following piece of code:

B_S = 64 

ENV = "Pong-v4" 

EPS_STRT = 1.0 

EPS_FINL = 0.005 

EPS_DECAY = 100000 

G = 0.99 

INIT_LEARN = 10000 

LR = 1e-4 

MEM_CAP = 20000 

N_EPDS = 2000 

TGT_UPD_FRQ = 1000

These values are experimental, and I encourage you to try changing them and observe the
impact they have on the results.

1. This is the last step of the exercise and is where we actually execute the DQN training
routine, as follows:

i) First, we instantiate the game environment.

ii) Then, we define the device that the training will happen on – either CPU or GPU, based
on availability.

iii) Next, we instantiate the main and target CNN models. We also define Adam as the
optimizer for the CNN models.

iv) We then instantiate an experience replay buffer.

v) Finally, we begin training the main CNN model. Once the training routine finishes, we
close the instantiated environment.

The code for this is as follows:

env = wrap_env(ENV) 

dvc = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") 

mdl, tgt_mdl = models_init(env, dvc) 

opt = Adam(mdl.parameters(), lr=LR) 

rpl_bfr = RepBfr(MEM_CAP) 

train(env, mdl, tgt_mdl, opt, rpl_bfr, dvc) 

env.close()

This should give us the following output:



Figure 11. 5 – DQN training logs

Furthermore, the following graph shows the progression of the current rewards, best
rewards, and average rewards, as well as the epsilon values against the progression of the
episodes:



Figure 11. 6 – DQN training curves

The following graph shows how the epsilon value decreases over episodes during the
training process:

Figure 11. 7 – Epsilon variation over episodes



Notice that in Figure 11. 6, the running average value of rewards in an episode (red
curve) starts at -20, which is the scenario where the agent scores 0 points in a game and
the opponent scores all 20 points. As the episodes progress, the average rewards keep
increasing and by episode number 1500, it crosses the zero mark. This means that after
1500 episodes of training, the agent has leveled up against the opponent.

From here onward, the average rewards are positive, which indicates that the agent is
winning against the opponent on average. We have only trained until 2000 episodes,
which already results in the agent winning by a margin of over 7 average points against
the opponent. I encourage you to train it for longer and see if the agent can absolutely
crush the opponent by always scoring all the points and winning by a margin of 20 points.

This concludes our deep dive into the implementation of a DQN model. DQN has been
vastly successful and popular in the field of RL and is definitely a great starting point for
those interested in exploring the field further. PyTorch, together with the gym library, is a
great resource that enables us to work in various RL environments and work with
different kinds of DRL models.

In this chapter, we have only focused on DQNs, but the lessons we've learned can be
transferred to working with other variants of Q-learning models and other DRL
algorithms.

Summary

RL is one of the fundamental branches of machine learning and is currently one of the
hottest, if not the hottest, areas of research and development. RL-based AI breakthroughs
such as AlphaGo from Google's DeepMind have further increased enthusiasm and interest
in the field. This chapter provided an overview of RL and DRL and walked us through a
hands-on exercise of building a DQN model using PyTorch.

RL is a vast field and one chapter is not enough to cover everything. I encourage you to
use the high-level discussions from this chapter to explore the details around those
discussions. From the next chapter onward, we will focus on the practical aspects of
working with PyTorch, such as model deployment, parallelized training, automated
machine learning, and so on. In the next chapter, we will start by discussing how to
effectively use PyTorch to put trained models into production systems.
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So far in this book, we have covered how to train and test different kinds of machine
learning models using PyTorch. We started by reviewing the basic elements of PyTorch
that enable us to work on deep learning tasks efficiently. Then, we explored a wide range
of deep learning model architectures and applications that can be written using PyTorch.

In this chapter, we will be focusing on taking these models into production. But what does
that mean? Basically, we will be discussing the different ways of taking a trained and
tested model (object) into a separate environment where it can be used to make
predictions or inferences on incoming data. This is what is referred to as the
productionization of a model, as the model is being deployed into a production system.

We will begin by discussing some common approaches you can take to serve PyTorch
models in production environments, starting from defining a simple model inference
function and going all the way to using model microservices. We will then take a look at
TorchServe, which is a scalable PyTorch model-serving framework that has been jointly
developed by AWS and Facebook.

We will then dive into the world of exporting PyTorch models using TorchScript, which,
through serialization, makes our models independent of the Python ecosystem so that
they can be, for instance, loaded in a C++ based environment . We will also look beyond
the Torch framework and the Python ecosystem as we explore ONNX – an open source
universal format for machine learning models – which will help us export PyTorch trained
models to non-PyTorch and non-Pythonic environments.

Finally, we will briefly discuss how to use PyTorch for model serving with some of the
well-known cloud platforms such as Amazon Web Services (AWS), Google Cloud, and
Microsoft Azure.

Throughout this chapter, we will use the handwritten digits image classification
convolutional neural network (CNN) model that we trained in Chapter 1, Overview of

Deep Learning Using PyTorch, as our reference. We will demonstrate how that trained
model can be deployed and exported using the different approaches discussed in this
chapter.

This chapter is broken down into the following sections:

Model serving in PyTorch
Serving a PyTorch model using TorchServe
Exporting universal PyTorch models using TorchScript and ONNX
Serving PyTorch model in the cloud

https://packt.link/EarlyAccessCommunity


Model serving in PyTorch

In this section, we will begin with building a simple PyTorch inference pipeline that can
make predictions given some input data and the location of a previously trained and saved
PyTorch model. We will proceed thereafter to place this inference pipeline on a model
server that can listen to incoming data requests and return predictions. Finally, we will
advance from developing a model server to creating a model microservice using Docker.

Creating a PyTorch model inference pipeline

We will be working on the handwritten digits image classification CNN model that we
built in Chapter 1, Overview of Deep Learning Using PyTorch, on the MNIST  dataset. Using
this trained model, we will build an inference pipeline that shall be able to predict a digit
between 0 to 9 for a given handwritten-digit input image.

For the process of building and training the model, please refer to the Training a neural

network using PyTorch section of Chapter 1, Overview of Deep Learning Using PyTorch.
For the full code of this exercise, you can refer to our github repository [13.1 .

Saving and loading a trained model

In this section, we will demonstrate how to efficiently load a saved pre-trained PyTorch
model, which will later be used for serving requests.

So, using the notebook code from Chapter 1, Overview of Deep Learning Using PyTorch,
we have trained a model and evaluated it against test data samples. But what next? In
real life, we would like to close this notebook and, later on, still be able to use this model
that we worked hard on training to make inferences on handwritten-digit images. This is
where the concept of serving a model comes in.

From here, we will get into a position where we can use the preceding trained model in a
separate Jupyter notebook without having to do any (re)training. The crucial next step is
to save the model object into a file that can later be restored/de-serialized. PyTorch
provides two main ways of doing this:

The less recommended way is to save the entire model object as follows:

torch.save(model, PATH_TO_MODEL)

And then, the saved model can be later read as follows:

model = torch.load(PATH_TO_MODEL)

Although this approach looks the most straightforward, this can be problematic in some
cases. This is because we are not only saving the model parameters, but also the model
classes and directory structure used in our source code. If our class signatures or
directory structures change later, loading the model will fail in potentially unfixable ways.

The second and more recommended way is to only save the model parameters as
follows:

torch.save(model.state_dict(), PATH_TO_MODEL)

Later, when we need to restore the model, first we instantiate an empty model object and
then load the model parameters into that model object as follows:



model = ConvNet() 

model.load_state_dict(torch.load(PATH_TO_MODEL))

We will use the more recommended way to save the model as shown in the following code:

PATH_TO_MODEL = "./convnet.pth" 

torch.save(model.state_dict(), PATH_TO_MODEL)

The convnet.pth  file is essentially a pickle file containing model parameters.

At this point, we can safely close the notebook we were working on and open another one,
which is available at our github repository [13.2] :

1. As a first step, we will once again need to import libraries:

import torch

1. Next, we need to instantiate an empty CNN model once again. Ideally, the model
definition done in step 1 would be written in a Python script (say, cnn_model.py ), and
then we would simply need to write this:

from cnn_model import ConvNet

model = ConvNet()

However, since we are operating in Jupyter notebooks in this exercise, we shall rewrite
the model definition and then instantiate it as follows:

class ConvNet(nn.Module): 

    def __init__(self): 

       … 

    def forward(self, x): 

        … 

model = ConvNet()

1. We can now restore the saved model parameters into this instantiated model object as
follows:

PATH_TO_MODEL = "./convnet.pth" 

model.load_state_dict(torch.load(PATH_TO_MODEL, map_location="cpu"))

You shall see the following output:

Figure 13 .1 – Model parameter loading

This essentially means that the parameter loading is successful. That is, the model that we
have instantiated has the same structure as the model whose parameters were saved and
are now being restored. We specify that we are loading the model on a CPU device as
opposed to GPU (CUDA).

1. Finally, we want to specify that we do not wish to update or change the parameter
values of the loaded model, and we will do so with the following line of code:

model.eval()

This should give the following output:



Figure 13 .2 – Loaded model in evaluation mode

This again verifies that we are indeed working with the same model (architecture) that we
trained.

Building the inference pipeline

Having successfully loaded a pre-trained model in a new environment (notebook) in the
previous section, we shall now build our model inference pipeline and use it to run model
predictions:

1. At this point, we have the previously trained model object fully restored to us. We
shall now load an image that we can run the model prediction on using the following
code:

image = Image.open("./digit_image.jpg")

The image file should be available in the exercise folder and is as follows:

Figure 13 .3 – Model inference input image

It is not necessary to use this particular image in the exercise. You may use any image you
want, to check how the model reacts to it.



1. In any inference pipeline, there are three main components at the core of it: (a) the
data preprocessing component, (b) the model inference (forward pass in the case of
neural networks), and (c) the post-processing step.

We will begin with the first part by defining a function that takes in an image and
transforms it into the tensor that shall be fed to the model as input as follows:

def image_to_tensor(image): 

    gray_image = transforms.functional.to_grayscale(image) 

    resized_image = transforms.functional.resize(gray_image, (28, 28)) 

    input_image_tensor = transforms.functional.to_tensor(resized_image) 

    input_image_tensor_norm = transforms.functional.normalize(input_image_tensor, (0.1302,), (0.

    return input_image_tensor_norm

This can be seen as a series of steps as follows:

1. First, the RGB image is converted to a grayscale image.
2. The image is then resized to a 28x28  pixels image because this is the image size the

model is trained with.
3. Then, the image array is converted to a PyTorch tensor.
4. And finally, the pixel values in the tensor are normalized with the same mean and

standard deviation values as those used during model training time.

Having defined this function, we call it to convert our loaded image into a tensor:

input_tensor = image_to_tensor(image)

1. Next, we define the model inference functionality. This is where the model takes in
a tensor as input and outputs the predictions. In this case, the prediction will be any
digit between 0 to 9 and the input tensor will be the tensorized form of the input
image:

def run_model(input_tensor): 

    model_input = input_tensor.unsqueeze(0) 

    with torch.no_grad(): 

        model_output = model(model_input)[0] 

    model_prediction = model_output.detach().numpy().argmax() 

    return model_prediction

model_output  contains the raw predictions of the model, which contains a list of predictions
for each image. Because we have only one image in the input, this list of predictions will
just have one entry at index 0 . The raw prediction at index 0  is essentially a tensor with
10 probability values for digits 0,1,2...9, in that order. This tensor is converted to a numpy
array, and finally, we choose the digit that has the highest probability.

1. We can now use this function to generate our model prediction. The following code
uses the run_model  model inference function from step 3 to generate the model
prediction for the given input data, input_tensor :

output = run_model(input_tensor) 

print(output) 

print(type(output))

This should output the following:



Figure 13 .4 – Model inference output

As we can see from the preceding screenshot, the model outputs a numpy  integer. And
based on the image shown in Figure 13 .3, the model output seems rather correct.

1. Besides just outputting the model prediction, we can also write a debug function to
dig deeper into metrics such as raw prediction probabilities, as shown in the following
code snippet:

def debug_model(input_tensor): 

    model_input = input_tensor.unsqueeze(0) 

    with torch.no_grad(): 

        model_output = model(model_input)[0] 

    model_prediction = model_output.detach().numpy() 

    return np.exp(model_prediction)

This function is exactly the same as the run_model  function except that it returns the raw
list of probabilities for each digit. The model originally returns the logarithm of softmax
outputs because of the log_softmax  layer being used as the final layer in the model (refer
to step 2 of this exercise).

Hence, we need to exponentiate those numbers to return the softmax outputs, which are
equivalent to model prediction probabilities. Using this debug function, we can look at
how the model is performing in more detail, such as whether the probability distribution
is flat or has clear peaks:

print(debug_model(input_tensor))

This should produce an output similar to the following:

Figure 13 .5 – Model inference debug output

We can see that the third probability in the list is the highest by far, which corresponds to
digit 2.

1. Finally, we shall post-process the model prediction so that it can be used by other
applications. In our case, we are just going to transform the digit predicted by the
model from the integer type to the string type.

The post-processing step can be more complex in other scenarios, such as speech
recognition, where we might want to process the output waveform by smoothening,
removing outliers, and so on:



def post_process(output): 

    return str(output)

Because string is a serializable format, this enables the model predictions to be
communicated easily across servers and applications. We can check whether our final
post-processed data is as expected:

final_output = post_process(output) 

print(final_output) 

print(type(final_output))

This should provide you with the following output:

Figure 13 .6 – Post-processed model prediction

As expected, the output is now of the type  string.

This concludes our exercise of loading a saved model architecture, restoring its trained
weights, and using the loaded model to generate predictions for sample input data (an
image). We loaded a sample image, pre-processed it to transform it into a PyTorch tensor,
passed it to the model as input to obtain the model prediction, and post-processed the
prediction to generate the final output.

This is a step forward in the direction of serving trained models with a clearly defined
input and output interface. In this exercise, the input was an externally provided image
file and the output was a generated string containing a digit between 0 to 9. Such a
system can be embedded by copying and pasting the provided code into any application
that requires the functionality of digitizing hand-written digits.

In the next section, we will go a level deeper into model serving, where we aim to build a
system that can be interacted with by any application to use the digitizing functionality
without copying and pasting any code.

Building a basic model server

We have so far built a model inference pipeline that has all the code necessary to
independently perform predictions from a pre-trained model. Here, we will work on
building our first model server, which is essentially a machine that hosts the model
inference pipeline, actively listens to any incoming input data via an interface, and
outputs model predictions on any input data through the interface.

Writing a basic app using Flask

To develop our server, we will use a popular Python library – Flask [13.3]. Flask will
enable us to build our model server in a few lines of code . A good example of how this
library works is shown with the following code:



from flask import Flask 

app = Flask(__name__) 

@app.route('/') 

def hello_world(): 

    return 'Hello, World!' 

if __name__ == '__main__': 

    app.run(host='localhost', port=8890)

Say we saved this Python script as example.py  and ran it from the terminal:

python example.py

It would show the following output in the terminal:

Figure 13 .7 – Flask example app launch

Basically, it will launch a Flask server that will serve an app called example. Let's open a
browser and go to the following URL:

http://localhost:8890/

It will result in the following output in the browser:

Figure 13 .8 – Flask example app testing

Essentially, the Flask server is listening to port number 8890  on the IP address
0.0.0.0 (localhost)  at the endpoint / . As soon as we input localhost:8890/  in a browser
search bar and press Enter, a request is received by this server. The server then runs the
hello_world  function, which in turn returns the string Hello, World!  as per the function
definition provided in example.py .

Using Flask to build our model server

Using the principles of running a Flask server demonstrated in the preceding section, we
will now use the model inference pipeline built in the previous section to create our first
model server. At the end of the exercise, we will launch the server that will be listening to
incoming requests (image data input).

We will furthermore write another Python script that will make a request to this server by
sending the sample image shown in Figure 13 .3. The Flask server shall run the model
inference on this image and output the post-processed predictions.

The full code for this exercise is available on GitHub incuding the Flask server code [13.4]
and the client (request-maker) code [13.5].



Setting up model inference for Flask serving

In this section, we will load a pre-trained model and write the model inference pipeline
code:

1. First, we will build the Flask server. And for that, we once again start by importing
the necessary libraries:

from flask import Flask, request 

import torch

Both flask  and torch  are vital necessities for this task, besides other basic libraries such
as numpy  and json .

1. Next, we will need to define the model class (architecture):

class ConvNet(nn.Module): 

    def __init__(self): 

    def forward(self, x):

1. Now that we have the empty model class defined, we can instantiate a model object
and load the pre-trained model parameters into this model object as follows:

model = ConvNet() 

PATH_TO_MODEL = "./convnet.pth" 

model.load_state_dict(torch.load(PATH_TO_MODEL, map_location="cpu")) 

model.eval()

1. We will reuse the exact run_model  function defined in step 3 of the Building the

inference pipeline section:

def run_model(input_tensor): 

    … 

    return model_prediction

As a reminder, this function takes in the tensorized input image and outputs the model
prediction, which is any digit between 0 to 9.

1. Next, we will reuse the exact post_process  function defined in step 6 of the Building

the inference pipeline section:

def post_process(output): 

    return str(output)

This will essentially convert the integer output from the run_model  function to a string.

Building a Flask app to serve model

Having established the inference pipeline in the previous section, we will now build our
own Flask app and use it to serve the loaded model:

1. We will instantiate our Flask app as shown in the following line of code:

app = Flask(__name__)

This creates a Flask app with the same name as the Python script, which in our case is
server(.py) .



1. This is the critical step, where we will be defining an endpoint functionality of the
Flask server. We will expose a /test  endpoint and define what happens when a POST
request is made to that endpoint on the server as follows:

@app.route("/test", methods=["POST"]) 

def test(): 

    data = request.files['data'].read() 

    md = json.load(request.files['metadata']) 

    input_array = np.frombuffer(data, dtype=np.float32) 

    input_image_tensor = torch.from_numpy(input_array).view(md["dims"]) 

    output = run_model(input_image_tensor) 

    final_output = post_process(output) 

    return final_output

Let's go through the steps one by one:

1. First, we add a decorator to the function – test  – defined underneath. This decorator
tells the Flask app to run this function whenever someone makes a POST  request to the
/test  endpoint.

2. Next, we get to defining what exactly happens inside the test  function. First, we read
the data and metadata from the POST  request. Because the data is in serialized form,
we need to convert it into a numerical format – we convert it to a numpy  array. And
from a numpy  array, we swiftly cast it as a PyTorch tensor.

3. Next, we use the image dimensions provided in the metadata to reshape the tensor.
4. Finally, we run a forward pass of the model loaded earlier with this tensor. This gives

us the model prediction, which is then post-processed and returned by our test
function.

1. We have all the necessary ingredients to launch our Flask app. We will add these last
two lines to our server.py  Python script:

if __name__ == '__main__': 

    app.run(host='0.0.0.0', port=8890)

This indicates that the Flask server will be hosted at IP address 0.0.0.0  (also known as
localhost ) and port number 8890 . We may now save the Python script and in a new
terminal window simply execute the following:

python server.py

This will run the entire script written in the previous steps and you shall see the following
output:

Figure 13 .9 – Flask server launch

This looks similar to the example demonstrated in Figure 13 .7. The only difference is the
app name.

Using a Flask server to run predictions



We have successfully launched our model server, which is actively listening to requests.
Let's now work on making a request:

1. We will write a separate Python script in the next few steps to do this job. We begin
with importing libraries:

import requests 

from PIL import Image 

from torchvision import transforms

The requests  library will help us make the actual POST  request to the Flask server. Image
helps us to read a sample input image file, and transforms  will help us to preprocess the
input image array.

1. Next, we read an image file:

image = Image.open("./digit_image.jpg")

The image read here is an RGB image and may have any dimensions (not necessarily
28x28 as expected by the model as input).

1. We now define a preprocessing function that converts the read image into a format
that is readable by the model:

def image_to_tensor(image): 

    gray_image = transforms.functional.to_grayscale(image) 

    resized_image = transforms.functional.resize(gray_image, (28, 28)) 

    input_image_tensor = transforms.functional.to_tensor(resized_image) 

    input_image_tensor_norm = transforms.functional.normalize(input_image_tensor, (0.1302,), (0.

    return input_image_tensor_norm

Having defined the function, we can execute it:

image_tensor = image_to_tensor(image)

image_tensor  is what we need to send as input data to the Flask server.

1. Let's now get into packaging our data together to send it over. We want to send both
the pixel values of the image as well as the shape of the image (28x28) so that the
Flask server at the receiving end knows how to reconstruct the stream of pixel values
as an image:

dimensions = io.StringIO(json.dumps({'dims': list(image_tensor.shape)})) 

data = io.BytesIO(bytearray(image_tensor.numpy()))

We stringify the shape of our tensor and convert the image array into bytes to make it all
serializable.

1. This is the most critical step in this client code . This is where we actually make the
POST  request:

r = requests.post('http://localhost:8890/test', 

                  files={'metadata': dimensions,                          'data' : data})

Using the requests  library, we make the POST  request at the URL localhost:8890/test . This
is where the Flask server is listening for requests. We send both the actual image data (as
bytes) and the metadata (as string) in the form of a dictionary

1. The r  variable in the preceding code will receive the response of the request from the
Flask server. This response should contain the post-processed model prediction. We



will now read that output:

response = json.loads(r.content)

The response  variable will essentially contain what the Flask server outputs, which is a
digit between 0 and 9 as a string.

1. We can print the response just to be sure:

print("Predicted digit :", response)

At this point, we can save this Python script as make_request.py  and execute the following
command in the terminal:

python make_request.py

This should output the following:

Figure 13 .10 – Flask server response

Based on the input image (see Figure 13 .3), the response seems rather correct. This
concludes our current exercise.

Thus, we have successfully built a standalone model server that can render predictions for
handwritten digit images. The same set of steps can easily be extended to any other
machine learning model, and so this opens up endless possibilities with regards to
creating machine learning applications using PyTorch and Flask.

So far, we have moved from simply writing inference functions to creating model servers
that can be hosted remotely and render predictions over the network. In our next and
final model serving venture, we will go a level further. You might have noticed that in
order to follow the steps in the previous two exercises, there were inherent dependencies
to be considered. We are required to install certain libraries, save and load the models at
particular locations, read image data, and so on. All of these manual steps slow down the
development of a model server.

Up next, we will work on creating a model microservice that can be spun up with one
command and replicated across several machines .

Creating a model microservice

Imagine you know nothing about training machine learning models but want to use an
already-trained model without having to get your hands dirty with any PyTorch code. This
is where a paradigm such as the machine learning model microservice [13.6] comes into
play.

A machine learning model microservice can be thought of as a black box to which you
send input data and it sends back predictions to you. Moreover, it is easy to spin up this
black box on a given machine with just a few lines of code. The best part is that it scales
effortlessly. You can scale a microservice vertically by using a bigger machine (more
memory, more processing power) as well as horizontally, by replicating the microservice
across multiple machines.



How do we go about deploying a machine learning model as a microservice? Thanks to
the work done using Flask and PyTorch in the previous exercise, we are already a few
steps ahead. We have already built a standalone model server using Flask.

In this section, we will take that idea forward and build a standalone model-serving
environment using Docker. Docker helps containerize software, which essentially means
that it helps virtualize the entire operating system (OS), including software libraries,
configuration files, and even data files.

Note

Docker is a huge topic of discussion in itself. However, because the book is
focused on PyTorch, we will only cover the basic concepts and usage of Docker for
our limited purposes. If you are interested in reading about Docker further, their
own documentation is a great place to start [13.7] .

In our case, we have so far used the following libraries in building our model server:

Python
PyTorch
Pillow (for image I/O)
Flask

And, we have used the following data file:

Pre-trained model checkpoint file ( convnet.pth )

We have had to manually arrange for these dependencies by installing the libraries and
placing the file in the current working directory. What if we have to redo all of this in a
new machine? We would have to manually install the libraries and copy and paste the file
once again. This way of working is neither efficient nor failproof, as we might end up
installing different library versions across different machines, for example.

To solve this problem, we would like to create an OS-level blueprint that can be
consistently repeated across machines. This is where Docker comes in handy. Docker lets
us create that blueprint in the form of a Docker image. This image can then be built on
any empty machine with no assumptions regarding pre-installed Python libraries or an
already-available model.

Let's actually create such a blueprint using Docker for our digits classification model. In
the form of an exercise, we will go from a Flask-based standalone model server to a
Docker-based model microservice. Before delving into the exercise, you will need to install
Docker [13.8] :

1. First, we need to list the Python library requirements for our Flask model server. The
requirements (with their versions) are as follows:

torch==1.5.0 

torchvision==0.5.0 

Pillow==6.2.2 

Flask==1.1.1

As a general practice, we will save this list as a text file – requirements.txt . This file is also
available in our github repository [13.9] . This list will come in handy for installing the
libraries consistently in any given environment.



1. Next, we get straight to the blueprint, which, in Docker terms, will be the Dockerfile .
A Dockerfile  is a script that is essentially a list of instructions. The machine where this
Dockerfile  is run needs to execute the listed instructions in the file. This results in a
Docker image, and the process is called building an image.

An image here is a system snapshot that can be effectuated on any machine, provided
that the machine has the minimum necessary hardware resources (for example, installing
PyTorch alone requires multiple GBs of disk space).

Let's look at our Dockerfile  and try to understand what it does step by step. The full code
for the Dockerfile  is available in our guthub repository [13.10]

.

1. The FROM  keyword instructs Docker to fetch a standard Linux OS with python 3.8
baked in:

FROM python:3.8-slim

This ensures that we will have Python installed.

1. Next, install wget , which is a Unix command useful for downloading resources from
the internet via the command line:

RUN apt-get -q update && apt-get -q install -y wget

The &&  symbol indicates the sequential execution of commands written before and after
the symbol.

1. Here, we are copying two files from our local development environment into this
virtual environment:

COPY ./server.py ./ 

COPY ./requirements.txt ./

We copy the requirements file as discussed in step 1 as well as the Flask model server
code that we worked on in the previous exercise.

1. Next, we download the pre-trained PyTorch model checkpoint file:

RUN wget -q https://github.com/arj7192/MasteringPyTorchV2/raw/main/Chapter13/convnet.pth         

This is the same model checkpoint file that we had saved in the Saving and loading a

trained model section of this chapter.

1. Here, we are installing all the relevant libraries listed under requirements.txt :

RUN pip install -r requirements.txt

This txt  file is the one we wrote under step 1.

1. Next, we give root  access to the Docker client:

USER root

This step is important in this exercise as it ensures that the client has the credentials to
perform all necessary operations on our behalf, such as saving model inference logs on
the disk.



Note

In general, though, it is advised not to give root privileges to the client as per the
principle of least privilege in data security [13.11] .

1. Finally, we specify that after performing all the previous steps, Docker should execute
the python server.py  command:

ENTRYPOINT ["python", "server.py"]

This will ensure the launch of a Flask model server in the virtual machine.

1. Let's now run this Dockerfile. In other words, let's build a Docker image using the
Dockerfile from step 2. In the current working directory, on the command line, simply
run this:

docker build -t digit_recognizer .

We are allocating a tag with the name digit_recognizer  to our Docker image. This should
output the following:

Figure 13 .11 – Building a Docker image

Figure 13 .11 shows the sequential execution of the steps mentioned in step 2. Running
this step might take a while, depending on your internet connection, as it downloads the
entire PyTorch library among others to build the image.



1. At this stage, we already have a Docker image with the name digit_recognizer . We are
all set to deploy this image on any machine. In order to deploy the image on your own
machine for now, just run the following command:

docker run -p 8890:8890 digit_recognizer

With this command, we are essentially starting a virtual machine inside our machine
using the digit_recognizer  Docker image. Because our original Flask model server was
designed to listen to port 8890 , we have forwarded our actual machine's port 8890  to the
virtual machine's port 8890  using the -p argument. Running this command should output
this:

Figure 13 .12 – Running a Docker instance

The preceding screenshot is remarkably similar to Figure 13 .9 from the previous
exercise, which is no surprise because the Docker instance is running the same Flask
model server that we were manually running in our previous exercise.

1. We can now test whether our Dockerized Flask model server (model microservice)
works as expected by using it to make model predictions. We will once again use the
make_request.py  file used in the previous exercise to send a prediction request to our
model. From the current local working directory, simply execute this:

python make_request.py

This should output the following:

Figure 13 .13 – Microservice model prediction

The microservice seems to be doing the job, and thus we have successfully built and
tested our own machine learning model microservice using Python, PyTorch, Flask, and
Docker.

1. Upon successful completion of the preceding steps, you can close the launched
Docker instance from step 4 by pressing Ctrl+C as indicated in Figure 13 .12. And
once the running Docker instance is stopped, you can delete the instance by running
the following command:

docker rm $(docker ps -a -q | head -1)

This command basically removes the most recent inactive Docker instance, which in our
case is the Docker instance that we just stopped.

1. Finally, you can also delete the Docker image that we had built under step 3, by
running the following command:

docker rmi $(docker images -q "digit_recognizer")



This will basically remove the image that has been tagged with the digit_recognizer  tag.

This concludes our section for serving models written in PyTorch. We started off by
designing a local model inference system. We took this inference system and wrapped a
Flask-based model server around it to create a standalone model serving system.

Finally, we used the Flask-based model server inside a Docker container to essentially
create a model serving microservice. Using both the theory as well as the exercises
discussed in this section, you should be able to get started with hosting/serving your
trained models across different use cases, system configurations, and environments.

In the next section, we will stay with the model-serving theme but will discuss a particular
tool that has been developed precisely to serve PyTorch models: TorchServe. We will also
do a quick exercise to demonstrate how to use this tool.

Serving a PyTorch model using TorchServe

TorchServe, released in April 2020, is a dedicated PyTorch model-serving framework.
Using the functionalities offered by TorchServe, we can serve multiple models at the same
time with low prediction latency and without having to write much custom code.
Furthermore, TorchServe offers features such as model versioning, metrics monitoring,
and data preprocessing and post-processing.

This clearly makes TorchServe a more advanced model-serving alternative than the model
microservice we developed in the previous section. However, making custom model
microservices still proves to be a powerful solution for complicated machine learning
pipelines (which is more common than we might think).

In this section, we will continue working with our handwritten digits classification model
and demonstrate how to serve it using TorchServe. After reading this section, you should
be able to get started with TorchServe and go further in utilizing its full set of features.

Installing TorchServe

Before starting with the exercise, we will need to install Java 11 SDK as a requirement.
For Linux OS, run the following:

sudo apt-get install openjdk-11-jdk

And for macOS, we need to run the following command on the command line:

brew tap AdoptOpenJDK/openjdk

brew      install --cask adoptopenjdk11

And thereafter, we need to install torchserve  by running this:

pip install torchserve==0.6.0 torch-model-archiver==0.6.0

For detailed installation instructions, refer to torchserve documentation [13.12] .

Notice that we also install a library called torch-model-archiver [13.13]. This archiver aims
at creating one model file that will contain both the model parameters as well as the
model architecture definition in an independent serialized format as a .mar  file.

Launching and using a TorchServe server



Now that we have installed all that we need, we can start putting together our existing
code from the previous exercises to serve our model using TorchServe. We will hereon go
through a number of steps in the form of an exercise:

1. First, we will place the existing model architecture code in a model file saved as
convnet.py :

==========================convnet.py=========================== 

import torch 

import torch.nn as nn 

import torch.nn.functional as F 

class ConvNet(nn.Module): 

    def __init__(self): 

        … 

    def forward(self, x): 

        …

We will need this model file as one of the inputs to torch-model-archiver  to produce a
unified .mar  file. You can find the full model file in our github repository [13.14] .

Remember we had discussed the three parts of any model inference pipeline: data pre-
processing, model prediction, and post-processing. TorchServe provides handlers, which
handle the pre-processing and post-processing parts of popular kinds of machine learning
tasks: image_classifier , image_segmenter , object_detector , and text_classifier .

This list might grow in the future as TorchServe is actively being developed at the time of
writing this book.

1. For our task, we will create a custom image handler that is inherited from the default
Image_classifier  handler. We choose to create a custom handler because as opposed
to the usual image classification models that deal with color (RGB) images, our model
deals with grayscale images of a specific size (28x28 pixels). The following is the code
for our custom handler, which you can also find in our github repository [13.15] :

========================convnet_handler.py======================= 

from torchvision import transforms 

from ts.torch_handler.image_classifier import ImageClassifier 

class ConvNetClassifier(ImageClassifier): 

    image_processing = transforms.Compose([ 

        transforms.Grayscale(), transforms.Resize((28, 28)), 

        transforms.ToTensor(),  transforms.Normalize((0.1302,), (0.3069,))]) 

    def postprocess(self, output): 

        return output.argmax(1).tolist()

First, we imported the image_classifer  default handler, which will provide most of the
basic image classification inference pipeline handling capabilities. Next, we inherit the
ImageClassifer  handler class to define our custom ConvNetClassifier  handler class.

There are two blocks of custom code:

1. The data pre-processing step, where we apply a sequence of transformations to the
data exactly as we did in step 3 of the Building the inference pipeline section.

2. The postprocessing step, defined under the postprocess  method, where we extract the
predicted class label from the list of prediction probabilities of all classes

1. We already produced a convnet.pth  file in the Saving and loading a trained model

section of this chapter while creating the model inference pipeline. Using convnet.py ,
convnet_handler.py , and convnet.pth , we can finally create the .mar  file using
torch-model-archiver  by running the following command:



torch-model-archiver --model-name convnet --version 1.0 --model-file ./convnet.py --serialized-f

This command should result in a convnet.mar  file written to the current working directory.
We have specified a model_name  argument, which names the .mar  file. We have specified a
version  argument, which will be helpful in model versioning while working with multiple
variations of a model at the same time.

We have located where our convnet.py  (for model architecture), convnet.pth  (for model
weights) and convnet_handler.py  (for pre- and post-processing) files are, using the
model_file , serialzed_file , and handler  arguments, respectively.

1. Next, we need to create a new directory in the current working directory and move
the convnet.mar  file created in step 3 to that directory, by running the following on the
command line:

mkdir model_store 

mv convnet.mar model_store/

We have to do so to follow the design requirements of the TorchServe framework.

1. Finally, we may launch our model server using TorchServe. On the command line,
simply run the following:

torchserve --start --ncs --model-store model_store --models convnet.mar

This will silently start the model inference server and you will see some logs on the
screen, including the following:

Figure 13 .14 – TorchServe launch output

As you can see, TorchServe investigates the available devices on the machine among
other details. It allocates three separate URLs for inference, management, and metrics.
To check whether the launched server is indeed serving our model, we can ping the
management server with the following command:

curl http://localhost:8081/models

This should output the following:



Figure 13 .15 – TorchServe-served models

This verifies that the TorchServe server is indeed hosting the model.

1. Finally, we can test our TorchServe model server by making an inference request.
This time, we won't need to write a Python script, because the handler will already
take care of processing any input image file. So, we can directly make a request using
the digit_image.jpg  sample image file by running this:

curl http://127.0.0.1:8080/predictions/convnet -T ./digit_image.jpg

This should output 2  in the terminal, which is indeed the correct prediction as evident
from Figure 13 .3.

1. Finally, once we are done with using the model server, it can be stopped by running
the following on the command line:

torchserve --stop

This concludes our exercise on how to use TorchServe to spin up our own PyTorch model
server and use it to make predictions. There is a lot more to unpack here, such as model
monitoring (metrics), logging, versioning, benchmarking, and so on [13.16]. TorchServe’s
website is a great place to pursue these advanced topics in detail.

After finishing this section, you should be able to use TorchServe to serve your own
models. I encourage you to write custom handlers for your own use cases, explore the
various TorchServe configuration settings [13.17] , and try out other advanced features of
TorchServe [13.18] .

Note

TorchServe is constantlt evolving , with a lot of promise. My advice would be to
keep an eye on the rapid updates in this territory of PyTorch.

In the next section, we will take a look at exporting PyTorch models so that they can be
used in different environments, programming languages, and deep learning libraries.

Exporting universal PyTorch models using TorchScript and ONNX

We have discussed serving PyTorch models extensively in the previous sections of this
chapter, which is perhaps the most critical aspect of operationalizing PyTorch models in
production systems. In this section, we will look at another important aspect – exporting
PyTorch models. We have already learned how to save PyTorch models and load them
back from disk in the classic Python scripting environment. But we need more ways of
exporting PyTorch models. Why?

Well, for starters, the Python interpreter allows only one thread to run at a time using the
global interpreter lock (GIL). This keeps us from parallelizing operations. Secondly,
Python might not be supported in every system or device that we might want to run our
models on. To address these problems, PyTorch offers support for exporting its models in
an efficient format and in a platform- or language-agnostic manner such that a model can
be run in environments different from the one it was trained in.

We will first explore TorchScript, which enables us to export serialized and optimized
PyTorch models into an intermediate representation that can then be run in a Python-
independent program (say, a C++ program).



And then , we will look at ONNX and how it lets us save PyTorch models into a universal
format that can then be loaded into other deep learning frameworks and different
programming languages.

Understanding the utility of TorchScript

There are two key reasons why TorchScript is a vital tool when it comes to putting
PyTorch models into production:

PyTorch works on an eager execution basis, as discussed in Chapter 1, Overview of

Deep Learning Using PyTorch, of this book. This has its advantages, such as easier
debugging. However, executing steps/operations one by one by writing and reading
intermediate results to and from memory may lead to high inference latency as well as
limiting us from overall operational optimizations. To tackle this problem, PyTorch
provides its own just-in-time (JIT) compiler, which is based on the PyTorch-centered
parts of Python.

The JIT compiler compiles PyTorch models instead of interpreting, which is equivalent to
creating one composite graph for the entire model by looking at all of its operations at
once. The JIT-compiled code is TorchScript code, which is basically a statically typed
subset of Python. This compilation leads to several performance improvements and
optimizations, such as getting rid of the GIL and thereby enabling multithreading.

PyTorch is essentially built to be used with the Python programming language.
Remember, we have used Python in almost the entirety of this book too. However,
when it comes to productionizing models, there are more performant (that is, quicker)
languages than Python, such as C++. And also, we might want to deploy our trained
models on systems or devices that do not work with Python.

This is where TorchScript kicks in. As soon as we compile our PyTorch code into
TorchScript code, which is an intermediate representation of our PyTorch model, we can
serialize this representation into a C++-friendly format using the TorchScript compiler.
Thereafter, this serialized file can be read in a C++ model inference program using
LibTorch – the PyTorch C++ API.

We have mentioned JIT compilation of PyTorch models several times in this section. Let's
now look at two of the possible options of compiling our PyTorch models into TorchScript
format.

Model tracing with TorchScript

One way of translating PyTorch code to TorchScript is tracing the PyTorch model. Tracing
requires the PyTorch model object along with a dummy example input to the model. As
the name suggests, the tracing mechanism traces the flow of this dummy input through
the model (neural network), records the various operations, and renders a TorchScript
Intermediate Representation (IR), which can be visualized both as a graph as well as
TorchScript code.

We will now walk through the steps involved in tracing a PyTorch model using our
handwritten digits classification model. The full code for this exercise is available in our
github repository [13.19] .

The first five steps of this exercise are the same as the steps of the Saving and loading a

trained model and Building the inference pipeline sections, where we built the model



inference pipeline:

1. We will start with importing libraries by running the following code:

import torch 

...

1. Next, we will define and instantiate the model  object:

class ConvNet(nn.Module): 

    def __init__(self): 

       … 

    def forward(self, x): 

        … 

model = ConvNet()

1. Next, we will restore the model weights using the following lines of code:

PATH_TO_MODEL = "./convnet.pth" 

model.load_state_dict(torch.load(PATH_TO_MODEL, map_location="cpu")) 

model.eval()

1. We then load a sample image:

image = Image.open("./digit_image.jpg")

1. Next, we define the data pre-processing function:

def image_to_tensor(image): 

    gray_image = transforms.functional.to_grayscale(image) 

    resized_image = transforms.functional.resize(gray_image, (28, 28)) 

    input_image_tensor = transforms.functional.to_tensor(resized_image) 

    input_image_tensor_norm = transforms.functional.normalize(input_image_tensor, (0.1302,), (0.

    return input_image_tensor_norm

And we then apply the pre-processing function to the sample image:

input_tensor = image_to_tensor(image)

1. In addition to the code under step 3, we also execute the following lines of code:

for p in model.parameters(): 

    p.requires_grad_(False)

If we do not do this, the traced model will have all parameters requiring gradients and we
will have to load the model within the torch.no_grad()  context.

1. We already have the loaded PyTorch model object with pre-trained weights. We are
ready to trace the model with a dummy input as shown next:

demo_input = torch.ones(1, 1, 28, 28) 

traced_model = torch.jit.trace(model, demo_input)

The dummy input is an image with all pixel values set to 1 .

1. We can now look at the traced model graph by running this:

print(traced_model.graph)

This should output the following:



Figure 13 .16 – Traced model graph

Intuitively, the first few lines in the graph show the initialization of layers of this model,
such as cn1 , cn2 , and so on. Toward the end, we see the last layer, that is, the softmax
layer. Evidently, the graph is written in a lower-level language with statically typed
variables and closely resembles the TorchScript language.

1. Besides the graph, we can also look at the exact TorchScript code behind the traced
model by running this:

print(traced_model.code)

This should output the following lines of Python-like code that define the forward pass
method for the model:

Figure 13 .17 – Traced model code

This precisely is the TorchScript equivalent for the code that we wrote using PyTorch in
step 2.

1. Next, we will export or save the traced model:



torch.jit.save(traced_model, 'traced_convnet.pt')

1. Now we load the saved model:

loaded_traced_model = torch.jit.load('traced_convnet.pt')

Note that we didn't need to load the model architecture and parameters separately.

1. Finally, we can use this model for inference:

loaded_traced_model(input_tensor.unsqueeze(0))

The output is as follows:

This should output the following:

Figure 13 .18 – Traced model inference

1. We can check these results by re-running model inference on the original model:

model(input_tensor.unsqueeze(0))

This should produce the same output as in Figure 13 .18, which verifies that our traced
model is working properly.

You can use the traced model instead of the original PyTorch model object to build more
efficient Flask model servers and Dockerized model microservices, thanks to the GIL-free
nature of TorchScript. While tracing is a viable option for JIT compiling PyTorch models, it
has some drawbacks.

For instance, if the forward pass of the model consists of control flows such as if  and for
statements, then the tracing will only render one of the multiple possible paths in the
flow. In order to accurately translate PyTorch code to TorchScript code for such
scenarios, we will use the other compilation mechanism called scripting.

Model scripting with TorchScript

Please follow steps 1 to 6 from the previous exercise and then follow up with the steps
given in this exercise. The full code is available in our github repository [13.20] :

1. For scripting, we need not provide any dummy input to the model, and the following
line of code transforms PyTorch code to TorchScript code directly:

scripted_model = torch.jit.script(model)

1. Let's look at the scripted model graph by running the following line of code:

print(scripted_model.graph)

This should output the scripted model graph in a similar fashion as the traced model
graph, as shown in the following figure:



Figure 13 .19 – Scripted model graph

Once again, we can see similar, verbose, low-level script that lists the various edges of the
graph per line. Notice that the graph here is not the same as in Figure 13 .16, which
indicates differences in code compilation strategy in using tracing rather than scripting.

1. We can also look at the equivalent TorchScript code by running this:

print(scripted_model.code)

This should output the following:



Figure 13 .20 – Scripted model code

In essence, the flow is similar to that in Figure 13 .17; however, there are subtle
differences in the code signature resulting from differences in compilation strategy.

1. Once again, the scripted model can be exported and loaded back in the following way:

torch.jit.save(scripted_model, 'scripted_convnet.pt') 

loaded_scripted_model = torch.jit.load('scripted_convnet.pt')

1. Finally, we use the scripted model for inference using this:

loaded_scripted_model(input_tensor.unsqueeze(0))

This should produce the exact same results as in Figure 13 .18, which verifies that the
scripted model is working as expected.

Similar to tracing, a scripted PyTorch model is GIL-free and hence can improve model
serving performance when used with Flask or Docker. Table 13 .1 shows a quick
comparison between the model tracing and scripting approaches:

Table 13 .1 – Tracing versus scripting

We have so far demonstrated how PyTorch models can be translated and serialized as
TorchScript models. In the next section, we will completely get rid of Python for a moment
and demonstrate how to load the TorchScript serialized model using C++.

Running a PyTorch model in C++

Python can sometimes be limiting or we might be unable to run machine learning models
trained using PyTorch and Python. In this section, we will use the serialized TorchScript
model objects (using tracing and scripting) that we exported in the previous section to
run model inferences inside C++ code.

Note



Basic working knowledge of C++ is assumed for this section [13.21] . This section
specifically talks a lot about C++ code compilation [13.22]

For this exercise, we need to install CMake following the steps mentioned in [13.23] to be
able to build the C++ code. After that, we will create a folder named cpp_convnet  in the
current working directory and work from that directory:

1. Let's get straight into writing the C++ file that will run the model inference pipeline.
The full C++ code is available here in our github respository [13.24]:

#include <torch/script.h> 

... 

int main(int argc, char **argv) { 

    Mat img = imread(argv[2], IMREAD_GRAYSCALE);

First the . jpg  image file is read as a grayscale image using the OpenCV library. You will
need to install the OpenCV library for C++ as per your OS requirements - Mac [13.25],
Linux [13.26] or Windows [13.27].

1. The grayscale image is then resized to 28x28  pixels as that is the requirement for our
CNN model:

resize(img, img, Size(28, 28));

1. The image array is then converted to a PyTorch tensor:

auto input_ = torch::from_blob(img.data, { img.rows, img.cols, img.channels() }, at::kByte);

For all torch -related operations as in this step, we use the libtorch  library, which is the
home for all torch  C++-related APIs. If you have PyTorch installed, you need not install
LibTorch separately.

1. Because OpenCV reads the grayscale in (28, 28, 1) dimension, we need to turn it
around as (1, 28, 28) to suit the PyTorch requirements. The tensor is then reshaped to
shape (1,1,28,28), where the first 1  is batch_size  for inference and the second 1  is the
number of channels, which is 1  for grayscale:

    auto input = input_.permute({2,0,1}).unsqueeze_(0).reshape({1, 1, img.rows, img.cols}).toTyp

    input = (input – 0.1302) / 0.3069;

Because OpenCV read images have pixel values ranging from 0  to 255 , we normalize
these values to the range of 0  to 1 . Thereafter, we standardize the image with mean
0.1302  and std 0.3069 , as we did in a previous section (see step 2 of the Building the

inference pipeline section).

1. In this step, we load the JIT-ed TorchScript model object that we exported in the
previous exercise:

    auto module = torch::jit::load(argv[1]); 

    std::vector<torch::jit::IValue> inputs; 

    inputs.push_back(input);

1. Finally, we come to the model prediction, where we use the loaded model object to
make a forward pass with the supplied input data (an image, in this case):

auto output_ = module.forward(inputs).toTensor();

The output_  variable contains a list of probabilities for each class. Let's extract the class
label with the highest probability and print it:



auto output = output_.argmax(1); 

cout << output << '\n';

Finally, we successfully exit the C++ routine:

    return 0; 

}

1. While steps 1-6 concern the various parts of our C++, we also need to write a
CMakeLists.txt  file in the same working directory. The full code for this file is available
in our github repository [13.28] :

cmake_minimum_required(VERSION 3.0 FATAL_ERROR) 

project(cpp_convnet) 

find_package(Torch REQUIRED) 

find_package(OpenCV REQUIRED)

add_executable(cpp_convnet cpp_convnet.cpp) 

...

This file is basically the library installation and building script similar to setup.py  in a
Python project. In addition to this code, the OpenCV_DIR  environment variable needs to be
set to the path where the OpenCV build artifacts are created, shown in the following code
block:

export OpenCV_DIR=/Users/ashish.jha/code/personal/MasteringPyTorchV2     /     Chapter13     /cp

1. Next, we need to actually run the CMakeLists  file to create build artifacts. We do so by
creating a new directory in the current working directory and run the build process
from there. In the command line, we simply need to run the following:

mkdir build 

cd build 

cmake -DCMAKE_PREFIX_PATH=/Users/ashish.jha/opt/anaconda3/envs/mastering_pytorch/lib/python3.9/s

cmake --build . --config Release

In the third line, you shall provide the path to LibTorch. To find your own, open Python
and execute this:

import torch; torch.__path__

For me, it outputs this:

['/Users/ashish.jha/opt/anaconda3/envs/mastering_pytorch/lib/python3.9/site-packages/torch     '

Executing the third line shall output the following:



Figure 13 .21 – The C++ CMake output

And the fourth line should result in this:

Figure 13 .22 – C++ model building

1. Upon successful execution of the previous step, we will have produced a C++
compiled binary with the name cpp_convnet . It is now time to execute this binary
program. In other words, we can now supply a sample image to our C++ model for
inference. We may use the scripted model as input:

./cpp_convnet ../../scripted_convnet.pt ../../digit_image.jpg

Alternatively, we may use the traced model as input:

./cpp_convnet ../../traced_convnet.pt ../../digit_image.jpg

Either of these should result in the following output:

Figure 13 .23 – C++ model prediction

According to Figure 13 .3, the C++ model seems to be working correctly. Because we
have used a different image handling library in C++ (that is, OpenCV) as compared to in
Python (PIL), the pixel values are slightly differently encoded, which will result in slightly
different prediction probabilities, but the final model prediction in the two languages
should not differ significantly if correct normalizations are applied.

This concludes our exploration of PyTorch model inference using C++. This exercise shall
help you get started with transporting your favorite deep learning models written and
trained using PyTorch into a C++ environment, which should make predictions more



efficient as well as opening up the possibility of hosting models in Python-less
environments (for example, certain embedded systems, drones, and so on).

In the next section, we will move away from TorchScript and discuss a universal neural
network modeling format – ONNX – that has enabled model usage across deep learning
frameworks, programming languages, and OSes. We will work on loading a PyTorch
trained model for inference in TensorFlow.

Using ONNX to export PyTorch models

There are scenarios in production systems where most of the already-deployed machine
learning models are written in a certain deep learning library, say, TensorFlow, with its
own sophisticated model-serving infrastructure. However, if a certain model is written
using PyTorch, we would like it to be runnable using TensorFlow to conform to the
serving strategy. This is one among various other use cases where a framework such as
ONNX is useful.

ONNX is a universal format where the essential operations of a deep learning model such
as matrix multiplications and activations, written differently in different deep learning
libraries, are standardized. It enables us to interchangeably use different deep learning
libraries, programming languages, and even operating environments to run the same deep
learning model.

Here, we will demonstrate how to run a model, trained using PyTorch, in TensorFlow. We
will first export the PyTorch model into ONNX format and then load the ONNX model
inside TensorFlow code.

ONNX works with restricted versions of TensorFlow and hence we will work with
tensorflow==1.15.0 . And because of this we will work with python 3.7, as
tensorflow==1.15.0 is not available in the newer versions of python. You can create and
activate a new conda environment with python 3.7 with the following command:

conda create -n <env_name> python=3.7 

source activate <env_name> 

We will also need to install the onnx==1.7.0  and onnx-tf==1.5.0  libraries for the exercise.
The full code for this exercise is available in our github repository [13.29] . Please follow
steps 1 to 11 from the Model tracing with TorchScript section, and then follow up with the
steps given in this exercise:

1. Similar to model tracing, we again pass a dummy input through our loaded model:

demo_input = torch.ones(1, 1, 28, 28) 

torch.onnx.export(model, demo_input, "convnet.onnx")

This should save a model onnx  file. Under the hood, the same mechanism is used for
serializing the model as was used in model tracing.

1. Next, we load the saved onnx  model and convert it into a TensorFlow model:

import onnx 

from onnx_tf.backend import prepare 

model_onnx = onnx.load("./convnet.onnx") 

tf_rep = prepare(model_onnx) 

tf_rep.export_graph("./convnet.pb")



1. Next, we load the serialized tensorflow  model to parse the model graph. This will help
us in verifying that we have loaded the model architecture correctly as well as in
identifying the input and output nodes of the graph:

with tf.gfile.GFile("./convnet.pb", "rb") as f: 

    graph_definition = tf.GraphDef() 

    graph_definition.ParseFromString(f.read()) 

with tf.Graph().as_default() as model_graph: 

    tf.import_graph_def(graph_definition, name="") 

for op in model_graph.get_operations(): 

    print(op.values())

This should output the following:

Figure 13 .24 – TensorFlow model graph

From the graph, we are able to identify the input and output nodes, as marked.

1. Finally, we can assign variables to the input and output nodes of the neural network
model, instantiate a TensorFlow session, and run the graph to generate predictions
for our sample image:

model_output = model_graph.get_tensor_by_name('18:0') 

model_input = model_graph.get_tensor_by_name('input.1:0') 

sess = tf.Session(graph=model_graph) 

output = sess.run(model_output, feed_dict={model_input: input_tensor.unsqueeze(0)}) 

print(output)

This should output the following:

Figure 13 .25 – TensorFlow model prediction



As you can see, in comparison with Figure 13 .18, the predictions are exactly the same for
the TensorFlow and PyTorch versions of our model. This validates the successful
functioning of the ONNX framework. I encourage you to dissect the TensorFlow model
further and understand how ONNX helps regenerate the exact same model in a different
deep learning library by utilizing the underlying mathematical operations in the model
graph.

This concludes our discussion of the different ways of exporting PyTorch models. The
techniques covered here will be useful in deploying PyTorch models in production systems
as well as in working across various platforms. As new versions of deep learning libraries,
programming languages, and even OSes keep coming, this is an area that will rapidly
evolve accordingly.

Hence, it is highly advisable to keep an eye on the developments and make sure to use the
latest and most efficient ways of exporting models as well as operationalizing them into
production.

So far, we have been working on our local machines for serving and exporting our
PyTorch models. In the next and final section of this chapter, we will briefly look at
serving PyTorch models on some of the well-known cloud platforms, such as AWS, Google
Cloud, and Microsoft Azure.

Serving PyTorch models in the cloud

Deep learning is computationally expensive and therefore demands powerful and
sophisticated computational hardware. Not everyone might have access to a local
machine that has enough CPUs and GPUs to train gigantic deep learning models in a
reasonable time. Furthermore, we cannot guarantee 100 percent availability for a local
machine that is serving a trained model for inference. For reasons such as these, cloud
computing platforms are a vital alternative for both training and serving deep learning
models.

In this section, we will discuss how to use PyTorch with some of the most popular cloud
platforms – AWS, Google Cloud, and Microsoft Azure. We will explore the different
ways of serving a trained PyTorch model in each of these platforms. The model-serving
exercises we discussed in the earlier sections of this chapter were executed on a local
machine. The goal of this section is to enable you to perform similar exercises using
virtual machines (VMs) on the cloud.

Using PyTorch with AWS

AWS is the oldest and one of the most popular cloud computing platforms. It has deep
integrations with PyTorch. We have already seen an example of it in the form of
TorchServe, which is jointly developed by AWS and Facebook.

In this section, we will look at some of the common ways of serving PyTorch models using
AWS. First, we will simply learn how to use an AWS instance as a replacement for our
local machine (laptop) to serve PyTorch models. Then, we will briefly discuss Amazon
SageMaker, which is a fully dedicated cloud machine learning platform. We will briefly
discuss how TorchServe can be used together with SageMaker for model serving.

Note



This section assumes basic familiarity with AWS. Therefore, we will not be
elaborating on topics such as what an AWS EC2 instance is, what AMIs are, how
to create an instance, and so on [13.30]. . We will instead focus on the
components of AWS that are related to PyTorch.

Serving a PyTorch model using an AWS instance

In this section, we will demonstrate how we can use PyTorch within a VM – an AWS
instance, in this case. After reading this section, you will be able to execute the exercises
discussed in the Model serving in PyTorch section inside an AWS instance.

First, you will need to create an AWS account if you haven't done so already. Creating an
account requires an email address and a payment method (credit card) [13.31]. .

Once you have an AWS account, you may log in to enter the AWS console [13.32] . From
here, we basically need to instantiate a VM (AWS instance) where we can start using
PyTorch for training and serving models. Creating a VM requires two decisions [13.33]:

Choosing the hardware configuration of the VM, also known as the AWS instance

type

Choosing the Amazon Machine Image (AMI), which entails all the required
software, such as the OS (Ubuntu or Windows), Python, PyTorch, and so on

. Typically, when we refer to an AWS instance, we are referring to an Elastic Cloud

Compute instance, also known as an EC2 instance.

Based on the computational requirements of the VM (RAM, CPUs, and GPUs), you can
choose from a long list of EC2 instances provided by AWS[13.34] . Because PyTorch
heavily leverages GPU compute power, it is recommended to use EC2 instances that
include GPUs, though they are generally costlier than CPU-only instances.

Regarding AMIs, there are two possible approaches to choosing an AMI. You may go for a
barebones AMI that only has an OS installed, such as Ubuntu (Linux). In this case, you
can then manually install Python [13.35] and subsequently install PyTorch [13.36] .

An alternative and more recommended way is to start with a pre-built AMI that has
PyTorch installed already. AWS offers Deep Learning AMIs, which make the process of
getting started with PyTorch on AWS much faster and easier [13.37] .

Once you have launched an instance successfully using either of the suggested
approaches, you may simply connect to the instance using one of the various available
methods [13.38] .

SSH is one of the most common ways of connecting to an instance. Once you are inside
the instance, it will have the same layout as working on a local machine. One of the first
logical steps would then be to test whether PyTorch is working inside the machine.

To test, first open a Python interactive session by simply typing python  on the command
line. Then, execute the following line of code:

import torch

If it executes without error, it means that you have PyTorch installed on the system.



At this point, you can simply fetch all the code that we wrote in the preceding sections of
this chapter on model serving. On the command line inside your home directory, simply
clone this book's GitHub repository by running this:

git clone https://github.com/arj7192/MasteringPyTorchV2.git     

Then, within the Chapter13  subfolder, you will have all the code to serve the MNIST model
that we worked on in the previous sections. You can basically re-run the exercises, this
time on the AWS instance instead of your local computer.

Let's review the steps we need to take for working with PyTorch on AWS:

1. Create an AWS account.
2. Log in to the AWS console.
3. Click on the Launch a virtual machine button in the console.
4. Select an AMI. For example, select the Deep Learning AMI (Ubuntu).
5. Select an AWS instance type. For example, select p.2x large, as it contains a GPU.
6. Click Launch.
7. Click Create a new key pair. Give the key pair a name and download it locally.
8. Modify permissions of this key-pair file by running this on the command line:

chmod 400 downloaded-key-pair-file.pem

1. On the console, click on View Instances to see the details of the launched instance
and specifically note the public IP address of the instance.

2. Using SSH, connect to the instance by running this on the command line:

ssh -i downloaded-key-pair-file.pem ubuntu@<Public IP address>

The public IP address is the same as obtained in the previous step.

1. Once connected, start a python  shell and run import torch  in the shell to ensure that
PyTorch is correctly installed on the instance.

2. Clone this book's GitHub repository by running the following on the instance's
command line:

git clone https://github.com/arj7192/MasteringPyTorchV2.git     

1. Go to the chapter13  folder within the repository and start working on the various
model-serving exercises that are covered in the preceding sections of this chapter.

This brings us to the end of this section, where we have essentially learned how to start
working with PyTorch on a remote AWS instance [13.39] . Next, we will look at AWS's
fully dedicated cloud machine learning platform –Amazon SageMaker.

Using TorchServe with Amazon SageMaker

We have already discussed TorchServe in detail in the preceding section. As we know,
TorchServe is a PyTorch model-serving library developed by AWS and Facebook. Instead
of manually defining a model inference pipeline, model-serving APIs, and microservices,
you can use TorchServe, which provides all of these functionalities.

Amazon SageMaker, on the other hand, is a cloud machine learning platform that offers
functionalities such as the training of massive deep learning models as well as deploying
and hosting trained models on custom instances. When working with SageMaker, all we
need to do is this:



Specify the type and number of AWS instances we would like to spin up to serve the
model.
Provide the location of the stored pre-trained model object.

We do not need to manually connect to the instance and serve the model using
TorchServe. SageMaker takes care of all that. AWS website has some useful blogs t o get
started with using SageMaker and TorchServe to serve PyTorch models on an industrial
scale and within a few clicks [13.40] .AWS blogs also provides the use cases of Amazon
SageMaker when working with PyTorch [13.41] .

Tools such as SageMaker are incredibly useful for scalability during both model training
and serving. However, while using such one-click tools, we often tend to lose some
flexibility and debuggability. Therefore, it is for you to decide what set of tools works best
for your use case. This concludes our discussion on using AWS as a cloud platform for
working with PyTorch. Next, we will look at another cloud platform – Google Cloud.

Serving PyTorch model on Google Cloud

Similar to AWS, you first need to create a Google account (*@gmail.com) if you do not
have one already. Furthermore, to be able to log in to the Google Cloud console [13.42] ,
you will need to add a payment method (credit card details).

Note

We will not be covering the basics of Google Cloud here [13.43]. We will instead
focus on using Google Cloud for serving PyTorch models within a VM.

Once inside the console, we need to follow the steps similar to AWS to launch a VM where
we can serve our PyTorch model. You can always start with a barebones VM and manually
install PyTorch. But we will be using Google's Deep Learning VM Image [13.44] , which
has PyTorch pre-installed. Here are the steps for launching a Google Cloud VM and using
it to serve PyTorch models:

1. Launch Deep Learning VM Image on Google Cloud using the Google Cloud
marketplace [13.45] .

2. Input the deployment name in the command window. This name suffixed with -vm  acts
as the name of the launched VM. The command prompt inside this VM will look like
this:

<user>@<deployment-name>-vm:~/

Here, user  is the client connecting to the VM and deployment-name  is the name of the VM
chosen in this step.

1. Select PyTorch  as the Framework  in the next command window. This tells the platform to
pre-install PyTorch in the VM.

2. Select the zone for this machine. Preferably, choose the zone geographically closest to
you. Also, different zones have slightly different hardware offerings (VM
configurations) and hence you might want to choose a specific zone for a specific
machine configuration.

3. Having specified the software requirement in step 3, we shall now specify the
hardware requirements. In the GPU section of the command window, we need to
specify the GPU type and subsequently the number of GPUs to be included in the VM.



Google Cloud provides various GPU devices/configuratins [13.46] . In the GPU section,
also tick the checkbox that will automatically install the NVIDIA drivers that are
necessary to utilize the GPUs for deep learning.

1. Similarly, under the CPU section, we need to provide the machine type [13.47] .
Regarding step 5 and step 6, please be aware that different zones provide different
machine and GPU types as well as different combinations of GPU types and GPU
numbers.

2. Finally, click on the Deploy button. This will launch the VM and lead you to a page
that will have all the instructions needed to connect to the VM from your local
computer.

3. At this point, you may connect to the VM and ensure that PyTorch is correctly
installed by trying to import PyTorch from within a Python shell. Once verified, clone
this book's GitHub repository. Go to the Chapter13  folder and start working on the
model-serving exercises within this VM.

You can read more about creating the PyTorch deep learning VM on Google Cloud blogs
[13.48]. This concludes our discussion of using Google Cloud as a cloud platform to work
with PyTorch model serving. As you may have noticed, the process is very similar to that
of AWS. In the next and final section, we will briefly look at using Microsoft's cloud
platform, Azure, to work with PyTorch.

Serving PyTorch models with Azure

Once again, similar to AWS and Google Cloud, Azure requires a Microsoft-recognized
email ID for signing up, along with a valid payment method.

Note

We assume a basic understanding of the Microsoft Azure cloud platform for this
section [13.49] .

Once you have access to the Azure portal [13.50] , there are broadly two recommended
ways of getting started with using PyTorch on Azure:

Data Science Virtual Machine (DSVM)
Azure Machine Learning

We will now discuss these approaches briefly.

Working on Azure's Data Science Virtual Machine

Similar to Google Cloud's Deep Learning VM Image, Azure offers its own DSVM image
[13.51] , which is a fully dedicated VM image for data science and machine learning,
including deep learning.

These images are available for Windows [13.52] as well as Linux/Ubuntu [13.53].

The steps to create a DSVM instance using this image are quite similar to the steps
discussed for Google Cloud for both Windows [13.54] as well as Linux/Ubuntu [13.55].

Once you have created the DSVM, you can launch a Python shell and try to import the
PyTorch library to ensure that it is correctly installed. You may further test the
functionalities available in this DSVM for Linux [13.56] as well as Windows [13.57] .



Finally, you may clone this book's GitHub repository within the DSVM instance and use
the code within the Chapter13  folder to work on the PyTorch model-serving exercises
discussed in this chapter.

Discussing Azure Machine Learning Service

Similar to and predating Amazon's SageMaker, Azure provides an end-to-end cloud
machine learning platform. The Azure Machine Learning Service (AMLS) comprises the
following (to name just a few):

Azure Machine Learning VMs
Notebooks
Virtual environments
Datastores
Tracking machine learning experiments
Data labeling

A key difference between AMLS VMs and DSVMs is that the former are fully managed.
For instance, they can be scaled up or down based on the model training or serving
requirements [13.58] .

Just like SageMaker, Azure Machine Learning is useful both for training large-scale
models as well as deploying and serving those models. Azure website has a great tutorial
for training PyTorch models on AMLS as well as for deploying PyTorch models on AMLS
for Windows [13.59] as well as Linux [13.60] .

Azure Machine Learning aims at providing a one-click interface to the user for all machine
learning tasks. Hence, it is important to keep in mind the flexibility trade-off. Although we
have not covered all the details about Azure Machine Learning here, Azure's website is a
good resource for further reading [13.61] .

This brings us to the end of discussing what Azure has to offer as a cloud platform for
working with PyTorch [13.62] .

And that also concludes our discussion of using PyTorch to serve models on the cloud. We
have discussed AWS, Google Cloud, and Microsoft Azure in this section. Although there
are more cloud platforms available out there, the nature of their offerings and the ways of
using PyTorch within those platforms will be similar to what we have discussed. This
section will help you in getting started with working on your PyTorch projects on a VM in
the cloud.

Summary

In this chapter, we have explored the world of deploying trained PyTorch deep learning
models in production systems.

In the next chapter, we will look at another practical aspect of working with models in
PyTorch that helps immensely in saving time and resources while training and validating
deep learning models .



16 PyTorch and AutoML
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Automated machine learning (AutoML) provides methods to find the optimal neural
architecture and the best hyperparameter settings for a given neural network. We have
already covered neural architecture search in detail while discussing the RandWireNN  model
in Chapter 5, Hybrid Advanced Models.

In this chapter, we will look more broadly at the AutoML tool for PyTorch—Auto-PyTorch

—which performs both neural architecture search and hyperparameter search. We will
also look at another AutoML tool called Optuna that performs hyperparameter search for
a PyTorch model.

At the end of this chapter, non-experts will be able to design machine learning models
with little domain experience, and experts will drastically speed up their model selection
process.

This chapter is broken down into the following topics:

Finding the best neural architectures with AutoML
Using Optuna for hyperparameter search

Finding the best neural architectures with AutoML

One way to think of machine learning algorithms is that they automate the process of
learning relationships between given inputs and outputs. In traditional software
engineering, we would have to explicitly write/code these relationships in the form of
functions that take in input and return output. In the machine learning world, machine
learning models find such functions for us. Although we automate to a certain extent,
there is still a lot to be done. Besides mining and cleaning data, here are a few routine
tasks to be performed in order to get those functions:

Choosing a machine learning model (or a model family and then a model)
Deciding the model architecture (especially in the case of deep learning)
Choosing hyperparameters
Adjusting hyperparameters based on validation set performance
Trying different models (or model families)

These are the kinds of tasks that justify the requirement of a human machine learning
expert. Most of these steps are manual and either take a lot of time or need a lot of
expertise to discount the required time, and we have far fewer machine learning experts

https://packt.link/EarlyAccessCommunity


than needed to create and deploy machine learning models that are increasingly popular,
valuable, and useful across both industries and academia.

This is where AutoML comes to the rescue. AutoML has become a discipline within the
field of machine learning that aims to automate the previously listed steps and beyond.

In this section, we will take a look at Auto-PyTorch—an AutoML tool created to work with
PyTorch. In the form of an exercise, we will find an optimal neural network along with the
hyperparameters to perform handwritten digit classification—a task that we worked on in
Chapter 1, Overview of Deep Learning Using PyTorch.

The difference from the first chapter will be that this time, we do not decide the
architecture or the hyperparameters, and instead let Auto-PyTorch figure that out for us.
We will first load the dataset, then define an Auto-PyTorch model search instance, and
finally run the model searching routine, which will provide us with a best-performing
model.

Tool citation

Auto-PyTorch [16.1] Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for

Efficient and Robust AutoDL, Lucas Zimmer, Marius Lindauer, and Frank Hutter

[16.2]

Using Auto-PyTorch for optimal MNIST model search

We will execute the model search in the form of a Jupyter Notebook. In the text, we only
show the important parts of the code. The full code can be found in our github repository
[16.3]

Loading the MNIST dataset

We will now discuss the code for loading the dataset step by step, as follows:

1. First, we import the relevant libraries, like this:

import torch 

from autoPyTorch import AutoNetClassification

The last line is crucial, as we import the relevant Auto-PyTorch module here. This will
help us set up and execute a model search session.

1. Next, we load the training and test datasets using Torch application programming

interfaces (APIs), as follows:

train_ds = datasets.MNIST(...) 

test_ds = datasets.MNIST(...)

1. We then convert these dataset tensors into training and testing input ( X ) and output
( y ) arrays, like this:

X_train, X_test, y_train, y_test = train_ds.data.numpy().reshape(-1, 28*28), test_ds.data.numpy(

Note that we are reshaping the images into flattened vectors of size 784. In the next
section, we will be defining an Auto-PyTorch model searcher that expects a flattened
feature vector as input, and hence we do the reshaping.



Auto-PyTorch currently (at the time of writing) only provides support for featurized and
image data in the form of AutoNetClassification  and AutoNetImageClassification  respectively.
While we are using featurized data in this exercise, we leave it as an exercise for the
reader to use image data instead[16.4] .

Running a neural architecture search with Auto-PyTorch

Having loaded the dataset in the preceding section, we will now use Auto-PyTorch to
define a model search instance and use it to perform the tasks of neural architecture
search and hyperparameter search. We'll proceed as follows:

1. This is the most important step of the exercise, where we define an autoPyTorch  model
search instance, like this:

autoPyTorch = AutoNetClassification("tiny_cs",  # config preset 

             log_level='info', max_runtime=2000, min_budget=100, max_budget=1500)

The configs here are derived from the examples provided in the Auto-PyTorch repository
[16.5] . But generally, tiny_cs  is used for faster searches with fewer hardware
requirements.

The budget argument is all about setting constraints on resource consumption by the
Auto-PyTorch process. As a default, the unit of a budget is time—that is, how much
central processing unit/graphics processing unit (CPU/GPU) time we are
comfortable spending on the model search.

1. After instantiating an Auto-PyTorch model search instance, we execute the search by
trying to fit the instance on the training dataset, as follows:

autoPyTorch.fit(X_train, y_train, validation_split=0.1)

Internally, Auto-PyTorch will run several trials  of different model architectures and
hyperparameter settings based on methods mentioned in the original paper [16.2] .

The different trials  will be benchmarked against the 10% validation dataset, and the
best-performing trial  will be returned as output. The command in the preceding code
snippet should output the following:



Figure 16 .1 – Auto-PyTorch model accuracy

Figure 16 .1 basically shows the hyperparameter setting that Auto-PyTorch finds optimal
for the given task—for example, the learning rate is 0.068 , momentum is 0.934 , and so on.
The preceding screenshot also shows the training and validation set accuracy for the
chosen optimal model configuration.

1. Having converged to an optimal trained model, we can now make predictions on our
test set using that model, as follows:

y_pred = autoPyTorch.predict(X_test)print("Accuracy score", np.mean(y_pred.reshape(-1) == y_test

It should output something like this:



Figure 16 .2 – Auto-PyTorch model accuracy

As we can see, we have obtained a model with a decent test-set performance of 96.4%.
For context, a random choice on this task would lead to a performance rate of 10%. We
have obtained this good performance without defining either the model architecture or
the hyperparameters. Upon setting a higher budget, a more extensive search could lead to
an even better performance.

Also, the performance will vary based on the hardware (machine) on which the search is
being performed. Hardware with more compute power and memory can run more
searches in the same time budget, and hence can lead to a better performance.

Visualizing the optimal AutoML model

In this section, we will look at the best-performing model that we have obtained by
running the model search routine in the previous section. We'll proceed as follows:

1. Having already looked at the hyperparameters in the preceding section, let's look at
the optimal model architecture that Auto-PyTorch has devised for us, as follows:

pytorch_model = autoPyTorch.get_pytorch_model() 

print(pytorch_model)

It should output something like this:



Figure 16 .3 – Auto-PyTorch model architecture

The model consists of some structured residual blocks containing fully connected layers,
batch normalization layers, and ReLU activations. At the end, we see a final fully
connected layer with 10 outputs—one for each digit from 0 to 9.

1. We can also visualize the actual model graph using torchviz , as shown in the next
code snippet:

x = torch.randn(1, pytorch_model[0].in_features) 

y = pytorch_model(x) 

arch = make_dot(y.mean(), params=dict(pytorch_model.named_parameters())) 

arch.format="pdf" 

arch.filename = "convnet_arch" 

arch.render(view=False)

This should save a convnet_arch.pdf  file in the current working directory, which should
look like this upon opening:



Figure 16 .4 – Auto-PyTorch model diagram

1. To peek into how the model converged to this solution, we can look at the search
space that was used during the model-finding process with the following code:

autoPyTorch.get_hyperparameter_search_space()

This should output the following:



Figure 16 .5 – Auto-PyTorch model search space

It essentially lists the various ingredients required to build the model, with an allocated
range per ingredient. For instance, the learning rate is allocated a range of 0.0001 to 0.1

and this space is sampled in a log scale—this is not linear but logarithmic sampling.

In Figure 16 .1, we have already seen the exact hyperparameter values that Auto-PyTorch
samples from these ranges as optimal values for the given task. We can also alter these
hyperparameter ranges manually, or even add more hyperparameters, using the
HyperparameterSearchSpaceUpdates  sub-module under the Auto-PyTorch module [16.6] .

This concludes our exploration of Auto-PyTorch—an AutoML tool for PyTorch. We
successfully built an MNIST digit classification model using Auto-PyTorch, without
specifying either the model architecture or the hyperparameters. This exercise will help
you to get started with using this and other AutoML tools to build PyTorch models in an
automated fashion. Some other similar tools are listed here - Hyperopt [16.7], Tune
[16.8], Hypersearch [16.9], Skorcj [16.10], BoTorch [16.11] and Optuna [16.12]

While we cannot cover all of these tools in this chapter, in the next section we will discuss
Optuna, which is a tool focused exclusively on finding an optimal set of hyperparameters



and one that works well with PyTorch.

Using Optuna for hyperparameter search

Optuna is one of the hyperparameter search tools that supports PyTorch. You can read in
detail about the search strategies used by the tool, such as TPE (Tree-Structured

Parzen Estimation) and CMA-ES (Covariance Matrix Adaptation Evolution

Strategy) in the Optuna paper [16.13] . Besides the advanced hyperparameter search
methodologies, the tool provides a sleek API, which we will explore in a moment.

Tool citation

Optuna: A Next-Generation Hyperparameter Optimization Framework.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama (2019, in KDD).

In this section, we will once again build and train the MNIST  model, this time using Optuna
to figure out the optimal hyperparameter setting. We will discuss important parts of the
code step by step, in the form of an exercise. The full code can be found in our github
[16.14].

Defining the model architecture and loading dataset

First, we will define an Optuna-compliant model object. By Optuna-compliant, we mean
adding APIs within the model definition code that are provided by Optuna to enable the
parameterization of the model hyperparameters. To do this, we'll proceed as follows:

1. First, we import the necessary libraries, as follows:

import torch 

import optuna

The optuna  library will manage the hyperparameter search for us throughout the exercise.

1. Next, we define the model architecture. Because we want to be flexible with some of
the hyperparameters—such as the number of layers and the number of units in each
layer—we need to include some logic in the model definition code. So, first, we have
declared that we need anywhere in between 1  to 4  convolutional layers and 1  to 2
fully connected layers thereafter, as illustrated in the following code snippet:

class ConvNet(nn.Module): 

    def __init__(self, trial): 

        super(ConvNet, self).__init__() 

        num_conv_layers =  trial.suggest_int("num_conv_layers", 1, 4) 

        num_fc_layers = trial.suggest_int("num_fc_layers", 1, 2)

1. We then successively append the convolutional layers, one by one. Each convolutional
layer is instantly followed by a ReLU  activation layer, and for each convolutional layer,
we declare the depth of that layer to be between 16  and 64 .

The stride and padding are fixed to 3  and True  respectively, and the whole convolutional
block is then followed by a MaxPool  layer, then a Dropout  layer, with dropout probability
ranging anywhere between 0.1  to 0.4  (another hyperparameter), as illustrated in the
following code snippet:



        self.layers = [] 

        input_depth = 1 # grayscale image 

        for i in range(num_conv_layers): 

            output_depth = trial.suggest_int(f"conv_depth_{i}", 16, 64) 

            self.layers.append(nn.Conv2d(input_depth, output_depth, 3, 1)) 

            self.layers.append(nn.ReLU()) 

            input_depth = output_depth 

        self.layers.append(nn.MaxPool2d(2)) 

        p = trial.suggest_float(f"conv_dropout_{i}", 0.1, 0.4) 

        self.layers.append(nn.Dropout(p)) 

        self.layers.append(nn.Flatten())

1. Next, we add a flattening layer so that fully connected layers can follow. We have to
define a _get_flatten_shape  function to derive the shape of the flattening layer output.
We then successively add fully connected layers, where the number of units is
declared to be between 16  and 64 . A Dropout  layer follows each fully connected layer,
again with the probability range of 0.1 to 0.4 .

Finally, we append a fixed fully connected layer that outputs 10  numbers (one for each
class/digit), followed by a LogSoftmax  layer. Having defined all the layers, we then
instantiate our model object, as follows:

        input_feat = self._get_flatten_shape() 

        for i in range(num_fc_layers): 

            output_feat = trial.suggest_int(f"fc_output_feat_{i}", 16, 64) 

            self.layers.append(nn.Linear(input_feat, output_feat)) 

            self.layers.append(nn.ReLU()) 

            p = trial.suggest_float(f"fc_dropout_{i}", 0.1, 0.4) 

            self.layers.append(nn.Dropout(p)) 

            input_feat = output_feat 

        self.layers.append(nn.Linear(input_feat, 10)) 

        self.layers.append(nn.LogSoftmax(dim=1)) 

        self.model = nn.Sequential(*self.layers) 

    def _get_flatten_shape(self): 

        conv_model = nn.Sequential(*self.layers) 

        op_feat = conv_model(torch.rand(1, 1, 28, 28)) 

        n_size = op_feat.data.view(1, -1).size(1) 

        return n_size

This model initialization function is conditioned on the trial  object, which is facilitated by
Optuna and which will decide the hyperparameter setting for our model. Finally, the
forward  method is quite straightforward, as can be seen in the following code snippet:

    def forward(self, x): 

        return self.model(x)

Thus, we have defined our model object and we can now move on to loading the dataset.

1. The code for dataset loading is the same as in Chapter 1, Overview of Deep Learning

Using PyTorch and is shown again in the following snippet:

train_dataloader = torch.utils.data.DataLoader(...) 

test_dataloader = ...

In this section, we have successfully defined our parameterized model object as well as
loaded the dataset. We will now define the model training and testing routines, along with
the optimization schedule.

Defining the model training routine and optimization schedule



Model training itself involves hyperparameters such as optimizer, learning rate, and so
on. In this part of the exercise, we will define the model training procedure while utilizing
Optuna's parameterization capabilities. We'll proceed as follows:

1. First, we define the training routine. Once again, the code is the same as the training
routine code we had for this model in the exercise found in Chapter 1, Overview of

Deep Learning Using PyTorch, and is shown again here:

def train(model, device, train_dataloader, optim, epoch): 

    for b_i, (X, y) in enumerate(train_dataloader): 

        …

1. The model testing routine needs to be slightly augmented. To operate as per Optuna
API requirements, the test routine needs to return a model performance metric—
accuracy, in this case—so that Optuna can compare different hyperparameter settings
based on this metric, as illustrated in the following code snippet:

def test(model, device, test_dataloader): 

    with torch.no_grad(): 

        for X, y in test_dataloader: 

            … 

    accuracy = 100. * success/ len(test_dataloader.dataset) 

    return accuracy

1. Previously, we would instantiate the model and the optimization function with the
learning rate, and start the training loop outside of any function. But to follow the
Optuna API requirements, we do all that under an objective  function, which takes in
the same trial  object that was fed as an argument to the __init__  method of our
model object.

The trial  object is needed here too because there are hyperparameters associated with
deciding the learning rate value and choosing an optimizer, as illustrated in the following
code snippet:

def objective(trial): 

    model = ConvNet(trial) 

    opt_name = trial.suggest_categorical("optimizer", ["Adam", "Adadelta", "RMSprop", "SGD"]) 

    lr = trial.suggest_float("lr", 1e-1, 5e-1, log=True) 

    optimizer = getattr(optim,opt_name)(model.parameters(), lr=lr)     

    for epoch in range(1, 3):

        train(model, device, train_dataloader, optimizer, epoch) 

        accuracy = test(model, device,test_dataloader) 

        trial.report(accuracy, epoch) 

        if trial.should_prune(): 

            raise optuna.exceptions.TrialPruned() 

    return accuracy

For each epoch, we record the accuracy returned by the model testing routine.
Additionally, at each epoch, we check if we will prune—that is, if we will skip—the current
epoch. This is another feature offered by Optuna to speed up the hyperparameter search
process so that we don't waste time on poor hyperparameter settings.

Running Optuna's hyperparameter search

In this final part of the exercise, we will instantiate what is called an Optuna study and,
using the model definition and the training routine, we will execute Optuna's
hyperparameter search process for the given model and the given dataset. We'll proceed
as follows:



1. Having prepared all the necessary components in the preceding sections, we are
ready to start the hyperparameter search process—something that is called a study  in
Optuna terminology. A trial  is one hyperparameter-search iteration in a study . The
code can be seen in the following snippet:

study = optuna.create_study(study_name="mastering_pytorch", direction="maximize") 

study.optimize(objective, n_trials=10, timeout=2000)

The direction  argument helps Optuna compare different hyperparameter settings.
Because our metric is accuracy, we will need to maximize  the metric. We allow a maximum
of 2000  seconds for the study  or a maximum of 10  different searches—whichever finishes
first. The preceding command should output the following:

Figure 16 .6 – Optuna logs

As we can see, the third trial  is the most optimal trial, producing a test set accuracy of
98.77%, and the last three trials  are pruned. In the logs, we also see the
hyperparameters for each non-pruned trial . For the most optimal trial , for example,



there are three convolutional layers with 27, 28, and 46 feature maps respectively, and
then there are two fully connected layers with 57 and 54 units/neurons respectively, and
so on.

1. Each trial  is given a completed or a pruned status. We can demarcate those with the
following code:

pruned_trials = [t for t in study.trials if t.state == optuna.trial.TrialState.PRUNED]complete_t

1. And finally, we can specifically look at all the hyperparameters of the most successful
trial  with the following code:

print("results: ") 

trial = study.best_trial 

for key, value in trial.params.items(): 

    print("{}: {}".format(key, value))

You will see the following output:

Figure 16 .7 – Optuna optimal hyperparameters

As we can see, the output shows us the total number of trials  and the number of
successful trials  performed. It further shows us the model hyperparameters for the most
successful trial , such as the number of layers, the number of neurons in layers, learning
rate, optimization schedule, and so on.

This brings us to the end of the exercise. We have managed to use Optuna to define a
range of hyperparameter values for different kinds of hyperparameters for a handwritten
digit classification model. Using Optuna's hyperparameter search algorithm, we ran 10
different trials  and managed to obtain the highest accuracy of 98.77% in one of those
trials . The model (architecture and hyperparameters) from the most successful trial
can be used for training with larger datasets, thereby serving in a production system.

Using the lessons from this section, you can use Optuna to find the optimal
hyperparameters for any neural network model written in PyTorch. Optuna can also be
used in a distributed fashion if the model is extremely large and/or there are way too
many hyperparameters to tune [16.15] .



Lastly, Optuna supports not only PyTorch but other popular machine learning libraries
too, such as TensorFlow , Sklearn , MXNet , and so on.

Summary

In this chapter, we discussed AutoML, which aims to provide methods for model selection
and hyperparameter optimization. AutoML is useful for beginners who have little
expertise on making decisions such as how many layers to put in a model, which optimizer
to use, and so on. AutoML is also useful for experts to both speed up the model training
process and discover superior model architectures for a given task that would be nearly
impossible to figure manually.

In the next chapter, we will study another increasingly important and crucial aspect of
machine learning, especially deep learning. We will closely look at how to interpret output
produced by PyTorch models—a field popularly known as model interpretability or
explainability.
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Throughout this book, we have built several deep learning models that can perform
different kinds of tasks for us. For example, a handwritten digit classifier, an image-
caption generator, a sentiment classifier, and more. Although we have mastered how to
train and evaluate these models using PyTorch, we do not know what precisely is
happening inside these models while they make predictions. Model interpretability or
explainability is that field of machine learning where we aim to answer the question, why
did the model make that prediction? More elaborately, what did the model see in the input
data to make that particular prediction?

In this chapter, we will use the handwritten digit classification model from Chapter 1,
Overview of Deep Learning Using PyTorch, to understand its inner workings and thereby
explain why the model makes a certain prediction for a given input. We will first dissect
the model using only PyTorch code. Then, we will use a specialized model interpretability
toolkit, called Captum, to further investigate what is happening inside the model. Captum
is a dedicated third-party library for PyTorch that provides model interpretability tools for
deep learning models, including image- and text-based models.

This chapter should provide you with the skills that are necessary to uncover the internals
of a deep learning model. Looking inside a model this way can help you to reason about
the model's predictive behavior. At the end of this chapter, you will be able to use the
hands-on experience to start interpreting your own deep learning models using PyTorch
(and Captum).

This chapter is broken down into the following topics:

Model interpretability in PyTorch
Using Captum to interpret models

Model interpretability in PyTorch

In this section, we will dissect a trained handwritten digits classification model using
PyTorch in the form of an exercise. More precisely, we will be looking at the details of the
convolutional layers of the trained handwritten digits classification model to understand
what visual features the model is learning from the handwritten digit images. We will look
at the convolutional filters/kernels along with the feature maps produced by those filters.

Such details will help us to understand how the model is processing input images and,
therefore, making predictions. The full code for the exercise can be found in our github
repository [13.1] .

https://packt.link/EarlyAccessCommunity


Training the handwritten digits classifier – a recap

We will quickly revisit the steps involved in training the handwritten digits classification
model, as follows:

1. First, we import the relevant libraries, and then set the random seeds to be able to
reproduce the results of this exercise:

import torch 

np.random.seed(123) 

torch.manual_seed(123)

1. Next, we will define the model architecture:

class ConvNet(nn.Module): 

    def __init__(self): 

    def forward(self, x):

1. Next, we will define the model training and testing routine:

def train(model, device, train_dataloader, optim,  epoch): 

def test(model, device, test_dataloader):

1. We then define the training and testing dataset loaders:

train_dataloader = torch.utils.data.DataLoader(...) 

test_dataloader = torch.utils.data.DataLoader(...)

1. Next, we instantiate our model and define the optimization schedule:

device = torch.device("cpu") 

model = ConvNet() 

optimizer = optim.Adadelta(model.parameters(), lr=0.5)

1. Finally, we start the model training loop where we train our model for 20 epochs:

for epoch in range(1, 20): 

    train(model, device, train_dataloader, optimizer, epoch) 

    test(model, device, test_dataloader)

This should output the following:



Figure 13.1 – Model training logs

1. Finally, we can test the trained model on a sample test image. The sample test image
is loaded as follows:

test_samples = enumerate(test_dataloader) 

b_i, (sample_data, sample_targets) = next(test_samples) 

plt.imshow(sample_data[0][0], cmap='gray', interpolation='none') 

plt.show()

This should output the following:

Figure 13.2 – An example of a handwritten image

1. Then, we use this sample test image to make a model prediction, as follows:

print(f"Model prediction is : {model(sample_data).data.max(1)[1][0]}") 

print(f"Ground truth is : {sample_targets[0]}")



This should output the following:

Figure 13.3 – Model prediction

Therefore, we have trained a handwritten digits classification model and used it to make
inference on a sample image. We will now look at the internals of the trained model. We
will also investigate what convolutional filters have been learned by this model.

Visualizing the convolutional filters of the model

In this section, we will go through the convolutional layers of the trained model and look
at the filters that the model has learned during training. This will tell us how the
convolutional layers are operating on the input image, what kinds of features are being
extracted, and more:

1. First, we need to obtain a list of all the layers in the model, as follows:

model_children_list = list(model.children()) 

convolutional_layers = [] 

model_parameters = [] 

model_children_list

This should output the following:

Figure 13.4 – Model layers

As you can see, there are 2 convolutional layers that both have 3x3-sized filters. The first
convolutional layer uses 16 such filters, whereas the second convolutional layer uses 32.
We are focusing on visualizing convolutional layers in this exercise because they are
visually more intuitive. However, you can similarly explore the other layers, such as linear
layers, by visualizing their learned weights.

1. Next, we select only the convolutional layers from the model and store them in a
separate list:

for i in range(len(model_children_list)): 

    if type(model_children_list[i]) == nn.Conv2d: 



        model_parameters.append(model_children_list[i].w      eight) 

        convolutional_layers.append(model_children_list[i])

In this process, we also make sure to store the parameters or weights learned in each
convolutional layer.

1. We are now ready to visualize the learned filters of the convolutional layers. We begin
with the first layer, which has 16 filters of size 3x3 each. The following code visualizes
those filters for us:

plt.figure(figsize=(5, 4)) 

for i, flt in enumerate(model_parameters[0]): 

    plt.subplot(4, 4, i+1) 

    plt.imshow(flt[0, :, :].detach(), cmap='gray') 

    plt.axis('off') 

plt.show()

This should output the following:

Figure 13.5 – The first convolutional layer's filters

Firstly, we can see that all the learned filters are slightly different from each other, which
is a good sign. These filters usually have contrasting values inside them so that they can



extract some types of gradients when convolved around an image. During model
inference, each of these 16 filters operates independently on the input grayscale image
and produces 16 different feature maps, which we will visualize in the next section.

1. Similarly, we can visualize the 32 filters learned in the second convolutional layer
using the same code, as in the preceding step, but with the following change:

plt.figure(figsize=(5, 8)) 

for i, flt in enumerate(model_parameters[1]): 

plt.show()

This should output the following:

Figure 13.6 – The second convolutional layer's filters

Once again, we have 32 different filters/kernels that have contrasting values aimed at
extracting gradients from the image. These filters are already applied to the output of the
first convolutional layer, and hence produce even higher levels of output feature maps.



The usual goal of CNN models with multiple convolutional layers is to keep producing
more and more complex, or higher-level, features that can represent complex visual
elements such as a nose on a face, traffic lights on the road, and more.

Next, we will take a look at what comes out of these convolutional layers as these filters
operate/convolve on their given inputs.

Visualizing the feature maps of the model

In this section, we will run a sample handwritten image through the convolutional layers
and visualize the outputs of these layers:

1. First, we need to gather the results of every convolutional layer output in the form of
a list, which is achieved using the following code:

per_layer_results = [convolutional_layers[0](sample_data)] 

for i in range(1, len(convolutional_layers)): 

    per_layer_results.append(convolutional_layers[i](per_layer_results[-1]))

Notice that we call the forward pass for each convolutional layer separately while
ensuring that the nth convolutional layer receives as input the output of the (n-1)th
convolutional layer.

1. We can now visualize the feature maps produced by the two convolutional layers. We
will begin with the first layer by running the following code:

plt.figure(figsize=(5, 4)) 

layer_visualisation = per_layer_results[0][0, :, :, :] 

layer_visualisation = layer_visualisation.data 

print(layer_visualisation.size()) 

for i, flt in enumerate(layer_visualisation): 

    plt.subplot(4, 4, i + 1) 

    plt.imshow(flt, cmap='gray') 

    plt.axis("off") 

plt.show()

1. This should output the following:



Figure 13.7 – The first convolutional layer's feature maps

The numbers, (16, 26, 26), represent the output dimensions of the first convolution layer.
Essentially, the sample image size is (28, 28), the filter size is (3,3), and there is no
padding. Therefore, the resulting feature map size will be (26, 26). Because there are 16
such feature maps produced by the 16 filters (please refer to Figure 13.5), the overall
output dimension is (16, 26, 26).

As you can see, each filter produces a feature map from the input image. Additionally,
each feature map represents a different visual feature in the image. For example, the top-
left feature map essentially inverts the pixel values in the image (please refer to Figure

13.2), whereas the bottom-right feature map represents some form of edge detection.

These 16 feature maps are then passed on to the second convolutional layer, where yet
another 32 filters convolve separately on these 16 feature maps to produce 32 new
feature maps. We will look at these next.



1. We can use the same code as the preceding one with minor changes (as highlighted in
the following code) to visualize the 32 feature maps produced by the next
convolutional layer:

plt.figure(figsize=(5, 8)) 

layer_visualisation = per_layer_results[1][0, :, :, :] 

    plt.subplot(8, 4, i + 1) 

plt.show()

This should output the following:

Figure 13.8 – The second convolutional layer's feature maps

Compared to the earlier 16 feature maps, these 32 feature maps are evidently more
complex. They seem to be doing more than just edge detection, and this is because they
are already operating on the outputs of the first convolutional layer instead of the raw
input image.



In this model, the 2 convolutional layers are followed by 2 linear layers with (4,608x64)
and (64x10) number of parameters, respectively. Although the linear layer weights are
also useful to visualize, the sheer number of parameters (4,608x64) is, visually, a lot to
get your head around. Therefore, in this section, we will restrict our visual analysis to
convolutional weights only.

And thankfully, we have more sophisticated ways of interpreting model prediction without
having to look at such a large number of parameters. In the next section, we will explore
Captum, which is a machine learning model interpretability toolkit that works with
PyTorch and helps us to explain model decisions within a few lines of code.

Using Captum to interpret models

Captum [13.2] is an open source model interpretability library built by Facebook on top
of PyTorch, and it is currently (at the time of writing) under active development. In this
section, we will use the handwritten digits classification model that we had trained in the
preceding section. We will also use some of the model interpretability tools offered by
Captum to explain the predictions made by this model. The full code for the following
exercise can be found in our github repository [13.3] .

Setting up Captum

The model training code is similar to the code shown under the Training the handwritten

digits classifier – a recap section. In the following steps, we will use the trained model and
a sample image to understand what happens inside the model while making a prediction
for the given image:

1. There are few extra imports related to Captum that we need to perform in order to
use Captum's built-in model interpretability functions:

from captum.attr import IntegratedGradients 

from captum.attr import Saliency 

from captum.attr import DeepLift 

from captum.attr import visualization as viz

1. In order to do a model forward pass with the input image, we reshape the input image
to match the model input size:

captum_input = sample_data[0].unsqueeze(0) 

captum_input.requires_grad = True

1. As per Captum's requirements, the input tensor (image) needs to be involved in
gradient computation. Therefore, we set the requires_grad  flag for input to True .

2. Next, we prepare the sample image to be processed by the model interpretability
methods using the following code:

orig_image = np.tile(np.transpose((sample_data[0].cpu().detach().numpy() / 2) + 0.5, (1, 2, 0)), 

_ = viz.visualize_image_attr(None, orig_image, cmap='gray', method="original_image", title="Orig

This should output the following:



Figure 13.9 – The original image

We have tiled the grayscale image across the depth dimension so that it can be consumed
by the Captum methods, which expect a 3-channel image.

Next, we will actually apply some of Captum's interpretability methods to the forward
pass of the prepared grayscale image through the pretrained handwritten digits
classification model.

Exploring Captum's interpretability tools

In this section, we will be looking at some of the model interpretability methods offered by
Captum.

One of the most fundamental methods of interpreting model results is by looking at
saliency, which represents the gradients of the output (class 0, in this example) with
respect to the input (that is, the input image pixels). The larger the gradients with respect



to a particular input, the more important that input is. You can read more about how
these gradients are exactly calculated in the original saliency paper [13.4] . Captum
provides an implementation of the saliency method:

1. In the following code, we use Captum's Saliency  module to compute the gradients:

saliency = Saliency(model) 

gradients = saliency.attribute(captum_input, target=sample_targets[0].item()) 

gradients = np.reshape(gradients.squeeze().cpu().detach().numpy(), (28, 28, 1)) 

_ = viz.visualize_image_attr(gradients, orig_image, method="blended_heat_map", sign="absolute_va

show_colorbar=True, title="Overlayed Gradients")

This should output the following:

Figure 13.10 – Overlayed gradients

In the preceding code, we reshaped the obtained gradients to size (28,28,1)  in order to
overlay them on the original image, as shown in the preceding diagram. Captum's viz



module takes care of the visualizations for us. We can further visualize only the gradients,
without the original image, using the following code:

plt.imshow(np.tile(gradients/(np.max(gradients)), (1,1,3)));

We will get the following output:

Figure 13.11 – Gradients

As you can see, the gradients a re spread across those pixel regions in the image that are
likely to contain the digit 0 .

1. Next, using a similar code fashion, we will look at another interpretability method –
integrated gradients. With this method, we will look for feature attribution or
feature importance. That is, we'll look for what pixels are important to use when
making predictions. Under the integrated gradients technique, apart from the input



image, we also need to specify a baseline image, which is usually set to an image with
all of the pixel values set to zero.

An integral of gradients is then calculated with respect to the input image along the path
from the baseline image to the input image. Details of the implementation of integrated
gradients technique can be found in the original paper [13.5] . The following code uses
Captum's IntegratedGradients  module to derive the importance of each input image pixel:

integ_grads = IntegratedGradients(model) 

attributed_ig, delta=integ_grads.attribute(captum_input, target=sample_targets[0], baselines=cap

attributed_ig = np.reshape(attributed_ig.squeeze().cpu().detach().numpy(), (28, 28, 1)) 

_ = viz.visualize_image_attr(attributed_ig, orig_image, method="blended_heat_map",sign="all",show

This should output the following:

Figure 13.12 – Overlayed integrated gradients

As expected, the gradients are high in the pixel regions that contain the digit 0 .



1. Finally, we will look at yet another gradient-based attribution technique, called
deeplift. Deeplift also requires a baseline image besides the input image. Once again
for the baseline, we use an image with all the pixel values set to zero. Deeplift
computes the change in non-linear activation outputs with respect to the change in
input from the baseline image to the input image (Figure 13.9). The following code
uses the DeepLift  module provided by Captum to compute the gradients and displays
these gradients overlayed on the original input image:

deep_lift = DeepLift(model) 

attributed_dl = deep_lift.attribute(captum_input, target=sample_targets[0], baselines=captum_inp

attributed_dl = np.reshape(attributed_dl.squeeze(0).cpu().detach().numpy(), (28, 28, 1)) 

_ = viz.visualize_image_attr(attributed_dl, orig_image, method="blended_heat_map",sign="all",show

You should see the following output:

Figure 13.13 – Overlayed deeplift

Once again, the gradient values are extreme around the pixels that contain the digit 0 .



This brings us to the end of this exercise and this section. There are more model
interpretability techniques provided by Captum, such as LayerConductance, GradCAM,
and SHAP [13.6] . Model interpretability is an active area of research, and hence libraries
such as Captum are likely to evolve rapidly. More such libraries are likely to be developed
in the near future, which will enable us to make model interpretability a standard
component of the machine learning life cycle.

Summary

In this chapter, we have briefly explored how to explain or interpret the decisions made
by deep learning models using PyTorch.

In the next chapter of this book, we will learn how to rapidly train and test machine
learning models on PyTorch – a skill that is useful for quickly iterating over various
machine learning ideas. We will also discuss a few deep learning libraries and frameworks
that enable rapid prototyping with PyTorch.
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